Evaluate
\frac{157}{72}\approx 2.180555556
Factor
\frac{157}{2 ^ {3} \cdot 3 ^ {2}} = 2\frac{13}{72} = 2.1805555555555554
Share
Copied to clipboard
\frac{8+1}{4}-\frac{1}{15}\left(\frac{2\times 8+1}{8}-\left(\frac{1\times 4+1}{4}-\frac{1}{6}\right)\right)
Multiply 2 and 4 to get 8.
\frac{9}{4}-\frac{1}{15}\left(\frac{2\times 8+1}{8}-\left(\frac{1\times 4+1}{4}-\frac{1}{6}\right)\right)
Add 8 and 1 to get 9.
\frac{9}{4}-\frac{1}{15}\left(\frac{16+1}{8}-\left(\frac{1\times 4+1}{4}-\frac{1}{6}\right)\right)
Multiply 2 and 8 to get 16.
\frac{9}{4}-\frac{1}{15}\left(\frac{17}{8}-\left(\frac{1\times 4+1}{4}-\frac{1}{6}\right)\right)
Add 16 and 1 to get 17.
\frac{9}{4}-\frac{1}{15}\left(\frac{17}{8}-\left(\frac{4+1}{4}-\frac{1}{6}\right)\right)
Multiply 1 and 4 to get 4.
\frac{9}{4}-\frac{1}{15}\left(\frac{17}{8}-\left(\frac{5}{4}-\frac{1}{6}\right)\right)
Add 4 and 1 to get 5.
\frac{9}{4}-\frac{1}{15}\left(\frac{17}{8}-\left(\frac{15}{12}-\frac{2}{12}\right)\right)
Least common multiple of 4 and 6 is 12. Convert \frac{5}{4} and \frac{1}{6} to fractions with denominator 12.
\frac{9}{4}-\frac{1}{15}\left(\frac{17}{8}-\frac{15-2}{12}\right)
Since \frac{15}{12} and \frac{2}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{4}-\frac{1}{15}\left(\frac{17}{8}-\frac{13}{12}\right)
Subtract 2 from 15 to get 13.
\frac{9}{4}-\frac{1}{15}\left(\frac{51}{24}-\frac{26}{24}\right)
Least common multiple of 8 and 12 is 24. Convert \frac{17}{8} and \frac{13}{12} to fractions with denominator 24.
\frac{9}{4}-\frac{1}{15}\times \frac{51-26}{24}
Since \frac{51}{24} and \frac{26}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{4}-\frac{1}{15}\times \frac{25}{24}
Subtract 26 from 51 to get 25.
\frac{9}{4}-\frac{1\times 25}{15\times 24}
Multiply \frac{1}{15} times \frac{25}{24} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{4}-\frac{25}{360}
Do the multiplications in the fraction \frac{1\times 25}{15\times 24}.
\frac{9}{4}-\frac{5}{72}
Reduce the fraction \frac{25}{360} to lowest terms by extracting and canceling out 5.
\frac{162}{72}-\frac{5}{72}
Least common multiple of 4 and 72 is 72. Convert \frac{9}{4} and \frac{5}{72} to fractions with denominator 72.
\frac{162-5}{72}
Since \frac{162}{72} and \frac{5}{72} have the same denominator, subtract them by subtracting their numerators.
\frac{157}{72}
Subtract 5 from 162 to get 157.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}