Evaluate
\frac{16}{3}\approx 5.333333333
Factor
\frac{2 ^ {4}}{3} = 5\frac{1}{3} = 5.333333333333333
Share
Copied to clipboard
\frac{\frac{8+1}{4}\times \frac{5\times 3+1}{3}}{\frac{2\times 4+1}{4}}
Multiply 2 and 4 to get 8.
\frac{\frac{9}{4}\times \frac{5\times 3+1}{3}}{\frac{2\times 4+1}{4}}
Add 8 and 1 to get 9.
\frac{\frac{9}{4}\times \frac{15+1}{3}}{\frac{2\times 4+1}{4}}
Multiply 5 and 3 to get 15.
\frac{\frac{9}{4}\times \frac{16}{3}}{\frac{2\times 4+1}{4}}
Add 15 and 1 to get 16.
\frac{\frac{9\times 16}{4\times 3}}{\frac{2\times 4+1}{4}}
Multiply \frac{9}{4} times \frac{16}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{144}{12}}{\frac{2\times 4+1}{4}}
Do the multiplications in the fraction \frac{9\times 16}{4\times 3}.
\frac{12}{\frac{2\times 4+1}{4}}
Divide 144 by 12 to get 12.
\frac{12}{\frac{8+1}{4}}
Multiply 2 and 4 to get 8.
\frac{12}{\frac{9}{4}}
Add 8 and 1 to get 9.
12\times \frac{4}{9}
Divide 12 by \frac{9}{4} by multiplying 12 by the reciprocal of \frac{9}{4}.
\frac{12\times 4}{9}
Express 12\times \frac{4}{9} as a single fraction.
\frac{48}{9}
Multiply 12 and 4 to get 48.
\frac{16}{3}
Reduce the fraction \frac{48}{9} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}