Evaluate
-\frac{21}{4}=-5.25
Factor
-\frac{21}{4} = -5\frac{1}{4} = -5.25
Share
Copied to clipboard
\frac{\frac{8+1}{4}\left(-\frac{3\times 3+1}{3}\right)}{\frac{1\times 7+3}{7}}
Multiply 2 and 4 to get 8.
\frac{\frac{9}{4}\left(-\frac{3\times 3+1}{3}\right)}{\frac{1\times 7+3}{7}}
Add 8 and 1 to get 9.
\frac{\frac{9}{4}\left(-\frac{9+1}{3}\right)}{\frac{1\times 7+3}{7}}
Multiply 3 and 3 to get 9.
\frac{\frac{9}{4}\left(-\frac{10}{3}\right)}{\frac{1\times 7+3}{7}}
Add 9 and 1 to get 10.
\frac{\frac{9\left(-10\right)}{4\times 3}}{\frac{1\times 7+3}{7}}
Multiply \frac{9}{4} times -\frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-90}{12}}{\frac{1\times 7+3}{7}}
Do the multiplications in the fraction \frac{9\left(-10\right)}{4\times 3}.
\frac{-\frac{15}{2}}{\frac{1\times 7+3}{7}}
Reduce the fraction \frac{-90}{12} to lowest terms by extracting and canceling out 6.
\frac{-\frac{15}{2}}{\frac{7+3}{7}}
Multiply 1 and 7 to get 7.
\frac{-\frac{15}{2}}{\frac{10}{7}}
Add 7 and 3 to get 10.
-\frac{15}{2}\times \frac{7}{10}
Divide -\frac{15}{2} by \frac{10}{7} by multiplying -\frac{15}{2} by the reciprocal of \frac{10}{7}.
\frac{-15\times 7}{2\times 10}
Multiply -\frac{15}{2} times \frac{7}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{-105}{20}
Do the multiplications in the fraction \frac{-15\times 7}{2\times 10}.
-\frac{21}{4}
Reduce the fraction \frac{-105}{20} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}