Evaluate
\frac{59}{6}\approx 9.833333333
Factor
\frac{59}{2 \cdot 3} = 9\frac{5}{6} = 9.833333333333334
Share
Copied to clipboard
\frac{6+1}{3}-\left(-\frac{3\times 4+3}{4}\right)\times 2
Multiply 2 and 3 to get 6.
\frac{7}{3}-\left(-\frac{3\times 4+3}{4}\right)\times 2
Add 6 and 1 to get 7.
\frac{7}{3}-\left(-\frac{12+3}{4}\right)\times 2
Multiply 3 and 4 to get 12.
\frac{7}{3}-\left(-\frac{15}{4}\times 2\right)
Add 12 and 3 to get 15.
\frac{7}{3}-\frac{-15\times 2}{4}
Express -\frac{15}{4}\times 2 as a single fraction.
\frac{7}{3}-\frac{-30}{4}
Multiply -15 and 2 to get -30.
\frac{7}{3}-\left(-\frac{15}{2}\right)
Reduce the fraction \frac{-30}{4} to lowest terms by extracting and canceling out 2.
\frac{7}{3}+\frac{15}{2}
The opposite of -\frac{15}{2} is \frac{15}{2}.
\frac{14}{6}+\frac{45}{6}
Least common multiple of 3 and 2 is 6. Convert \frac{7}{3} and \frac{15}{2} to fractions with denominator 6.
\frac{14+45}{6}
Since \frac{14}{6} and \frac{45}{6} have the same denominator, add them by adding their numerators.
\frac{59}{6}
Add 14 and 45 to get 59.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}