Evaluate
-\frac{17}{15}\approx -1.133333333
Factor
-\frac{17}{15} = -1\frac{2}{15} = -1.1333333333333333
Share
Copied to clipboard
\frac{6+1}{3}\times \frac{2}{5}-\frac{\frac{6}{5}}{\frac{18}{25}}-\frac{10}{25}
Multiply 2 and 3 to get 6.
\frac{7}{3}\times \frac{2}{5}-\frac{\frac{6}{5}}{\frac{18}{25}}-\frac{10}{25}
Add 6 and 1 to get 7.
\frac{7\times 2}{3\times 5}-\frac{\frac{6}{5}}{\frac{18}{25}}-\frac{10}{25}
Multiply \frac{7}{3} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{14}{15}-\frac{\frac{6}{5}}{\frac{18}{25}}-\frac{10}{25}
Do the multiplications in the fraction \frac{7\times 2}{3\times 5}.
\frac{14}{15}-\frac{6}{5}\times \frac{25}{18}-\frac{10}{25}
Divide \frac{6}{5} by \frac{18}{25} by multiplying \frac{6}{5} by the reciprocal of \frac{18}{25}.
\frac{14}{15}-\frac{6\times 25}{5\times 18}-\frac{10}{25}
Multiply \frac{6}{5} times \frac{25}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{14}{15}-\frac{150}{90}-\frac{10}{25}
Do the multiplications in the fraction \frac{6\times 25}{5\times 18}.
\frac{14}{15}-\frac{5}{3}-\frac{10}{25}
Reduce the fraction \frac{150}{90} to lowest terms by extracting and canceling out 30.
\frac{14}{15}-\frac{25}{15}-\frac{10}{25}
Least common multiple of 15 and 3 is 15. Convert \frac{14}{15} and \frac{5}{3} to fractions with denominator 15.
\frac{14-25}{15}-\frac{10}{25}
Since \frac{14}{15} and \frac{25}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{11}{15}-\frac{10}{25}
Subtract 25 from 14 to get -11.
-\frac{11}{15}-\frac{2}{5}
Reduce the fraction \frac{10}{25} to lowest terms by extracting and canceling out 5.
-\frac{11}{15}-\frac{6}{15}
Least common multiple of 15 and 5 is 15. Convert -\frac{11}{15} and \frac{2}{5} to fractions with denominator 15.
\frac{-11-6}{15}
Since -\frac{11}{15} and \frac{6}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{17}{15}
Subtract 6 from -11 to get -17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}