Evaluate
\frac{83}{15}\approx 5.533333333
Factor
\frac{83}{3 \cdot 5} = 5\frac{8}{15} = 5.533333333333333
Share
Copied to clipboard
\frac{6+1}{3}+\frac{\frac{3\times 5+3}{5}}{\frac{1\times 8+1}{8}}
Multiply 2 and 3 to get 6.
\frac{7}{3}+\frac{\frac{3\times 5+3}{5}}{\frac{1\times 8+1}{8}}
Add 6 and 1 to get 7.
\frac{7}{3}+\frac{\left(3\times 5+3\right)\times 8}{5\left(1\times 8+1\right)}
Divide \frac{3\times 5+3}{5} by \frac{1\times 8+1}{8} by multiplying \frac{3\times 5+3}{5} by the reciprocal of \frac{1\times 8+1}{8}.
\frac{7}{3}+\frac{\left(15+3\right)\times 8}{5\left(1\times 8+1\right)}
Multiply 3 and 5 to get 15.
\frac{7}{3}+\frac{18\times 8}{5\left(1\times 8+1\right)}
Add 15 and 3 to get 18.
\frac{7}{3}+\frac{144}{5\left(1\times 8+1\right)}
Multiply 18 and 8 to get 144.
\frac{7}{3}+\frac{144}{5\left(8+1\right)}
Multiply 1 and 8 to get 8.
\frac{7}{3}+\frac{144}{5\times 9}
Add 8 and 1 to get 9.
\frac{7}{3}+\frac{144}{45}
Multiply 5 and 9 to get 45.
\frac{7}{3}+\frac{16}{5}
Reduce the fraction \frac{144}{45} to lowest terms by extracting and canceling out 9.
\frac{35}{15}+\frac{48}{15}
Least common multiple of 3 and 5 is 15. Convert \frac{7}{3} and \frac{16}{5} to fractions with denominator 15.
\frac{35+48}{15}
Since \frac{35}{15} and \frac{48}{15} have the same denominator, add them by adding their numerators.
\frac{83}{15}
Add 35 and 48 to get 83.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}