Solve for b
b\leq \frac{2}{3}
Share
Copied to clipboard
5\left(2\times 2+1\right)b+2\left(3\times 5+3\right)-4b\leq 50
Multiply both sides of the equation by 10, the least common multiple of 2,5. Since 10 is positive, the inequality direction remains the same.
5\left(4+1\right)b+2\left(3\times 5+3\right)-4b\leq 50
Multiply 2 and 2 to get 4.
5\times 5b+2\left(3\times 5+3\right)-4b\leq 50
Add 4 and 1 to get 5.
25b+2\left(3\times 5+3\right)-4b\leq 50
Multiply 5 and 5 to get 25.
25b+2\left(15+3\right)-4b\leq 50
Multiply 3 and 5 to get 15.
25b+2\times 18-4b\leq 50
Add 15 and 3 to get 18.
25b+36-4b\leq 50
Multiply 2 and 18 to get 36.
21b+36\leq 50
Combine 25b and -4b to get 21b.
21b\leq 50-36
Subtract 36 from both sides.
21b\leq 14
Subtract 36 from 50 to get 14.
b\leq \frac{14}{21}
Divide both sides by 21. Since 21 is positive, the inequality direction remains the same.
b\leq \frac{2}{3}
Reduce the fraction \frac{14}{21} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}