2 \frac { 1 } { 2 } - 1,4 \cdot ( 2 \frac { 2 } { 7 } )
Evaluate
-0,7
Factor
-0,7
Share
Copied to clipboard
\frac{4+1}{2}-1,4\times \frac{2\times 7+2}{7}
Multiply 2 and 2 to get 4.
\frac{5}{2}-1,4\times \frac{2\times 7+2}{7}
Add 4 and 1 to get 5.
\frac{5}{2}-1,4\times \frac{14+2}{7}
Multiply 2 and 7 to get 14.
\frac{5}{2}-1,4\times \frac{16}{7}
Add 14 and 2 to get 16.
\frac{5}{2}-\frac{7}{5}\times \frac{16}{7}
Convert decimal number 1,4 to fraction \frac{14}{10}. Reduce the fraction \frac{14}{10} to lowest terms by extracting and canceling out 2.
\frac{5}{2}-\frac{7\times 16}{5\times 7}
Multiply \frac{7}{5} times \frac{16}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{2}-\frac{16}{5}
Cancel out 7 in both numerator and denominator.
\frac{25}{10}-\frac{32}{10}
Least common multiple of 2 and 5 is 10. Convert \frac{5}{2} and \frac{16}{5} to fractions with denominator 10.
\frac{25-32}{10}
Since \frac{25}{10} and \frac{32}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{10}
Subtract 32 from 25 to get -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}