Evaluate
4.195
Factor
\frac{839}{2 ^ {3} \cdot 5 ^ {2}} = 4\frac{39}{200} = 4.195
Share
Copied to clipboard
\frac{4+1}{2}\left(3.25-4\right)-\frac{18.21}{-3}
Multiply 2 and 2 to get 4.
\frac{5}{2}\left(3.25-4\right)-\frac{18.21}{-3}
Add 4 and 1 to get 5.
\frac{5}{2}\left(-0.75\right)-\frac{18.21}{-3}
Subtract 4 from 3.25 to get -0.75.
\frac{5}{2}\left(-\frac{3}{4}\right)-\frac{18.21}{-3}
Convert decimal number -0.75 to fraction -\frac{75}{100}. Reduce the fraction -\frac{75}{100} to lowest terms by extracting and canceling out 25.
\frac{5\left(-3\right)}{2\times 4}-\frac{18.21}{-3}
Multiply \frac{5}{2} times -\frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{-15}{8}-\frac{18.21}{-3}
Do the multiplications in the fraction \frac{5\left(-3\right)}{2\times 4}.
-\frac{15}{8}-\frac{18.21}{-3}
Fraction \frac{-15}{8} can be rewritten as -\frac{15}{8} by extracting the negative sign.
-\frac{15}{8}-\frac{1821}{-300}
Expand \frac{18.21}{-3} by multiplying both numerator and the denominator by 100.
-\frac{15}{8}-\left(-\frac{607}{100}\right)
Reduce the fraction \frac{1821}{-300} to lowest terms by extracting and canceling out 3.
-\frac{15}{8}+\frac{607}{100}
The opposite of -\frac{607}{100} is \frac{607}{100}.
-\frac{375}{200}+\frac{1214}{200}
Least common multiple of 8 and 100 is 200. Convert -\frac{15}{8} and \frac{607}{100} to fractions with denominator 200.
\frac{-375+1214}{200}
Since -\frac{375}{200} and \frac{1214}{200} have the same denominator, add them by adding their numerators.
\frac{839}{200}
Add -375 and 1214 to get 839.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}