Solve for x
x=\frac{3\sqrt{6}}{20}+\frac{1}{10}\approx 0.467423461
x=-\frac{3\sqrt{6}}{20}+\frac{1}{10}\approx -0.267423461
Graph
Share
Copied to clipboard
\left(2\times 2+1\right)\times \left(\frac{1}{2}\right)^{2}+2x=10x^{2}
Multiply both sides of the equation by 2.
\left(4+1\right)\times \left(\frac{1}{2}\right)^{2}+2x=10x^{2}
Multiply 2 and 2 to get 4.
5\times \left(\frac{1}{2}\right)^{2}+2x=10x^{2}
Add 4 and 1 to get 5.
5\times \frac{1}{4}+2x=10x^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{5}{4}+2x=10x^{2}
Multiply 5 and \frac{1}{4} to get \frac{5}{4}.
\frac{5}{4}+2x-10x^{2}=0
Subtract 10x^{2} from both sides.
-10x^{2}+2x+\frac{5}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-10\right)\times \frac{5}{4}}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 2 for b, and \frac{5}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-10\right)\times \frac{5}{4}}}{2\left(-10\right)}
Square 2.
x=\frac{-2±\sqrt{4+40\times \frac{5}{4}}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-2±\sqrt{4+50}}{2\left(-10\right)}
Multiply 40 times \frac{5}{4}.
x=\frac{-2±\sqrt{54}}{2\left(-10\right)}
Add 4 to 50.
x=\frac{-2±3\sqrt{6}}{2\left(-10\right)}
Take the square root of 54.
x=\frac{-2±3\sqrt{6}}{-20}
Multiply 2 times -10.
x=\frac{3\sqrt{6}-2}{-20}
Now solve the equation x=\frac{-2±3\sqrt{6}}{-20} when ± is plus. Add -2 to 3\sqrt{6}.
x=-\frac{3\sqrt{6}}{20}+\frac{1}{10}
Divide -2+3\sqrt{6} by -20.
x=\frac{-3\sqrt{6}-2}{-20}
Now solve the equation x=\frac{-2±3\sqrt{6}}{-20} when ± is minus. Subtract 3\sqrt{6} from -2.
x=\frac{3\sqrt{6}}{20}+\frac{1}{10}
Divide -2-3\sqrt{6} by -20.
x=-\frac{3\sqrt{6}}{20}+\frac{1}{10} x=\frac{3\sqrt{6}}{20}+\frac{1}{10}
The equation is now solved.
\left(2\times 2+1\right)\times \left(\frac{1}{2}\right)^{2}+2x=10x^{2}
Multiply both sides of the equation by 2.
\left(4+1\right)\times \left(\frac{1}{2}\right)^{2}+2x=10x^{2}
Multiply 2 and 2 to get 4.
5\times \left(\frac{1}{2}\right)^{2}+2x=10x^{2}
Add 4 and 1 to get 5.
5\times \frac{1}{4}+2x=10x^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{5}{4}+2x=10x^{2}
Multiply 5 and \frac{1}{4} to get \frac{5}{4}.
\frac{5}{4}+2x-10x^{2}=0
Subtract 10x^{2} from both sides.
2x-10x^{2}=-\frac{5}{4}
Subtract \frac{5}{4} from both sides. Anything subtracted from zero gives its negation.
-10x^{2}+2x=-\frac{5}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}+2x}{-10}=-\frac{\frac{5}{4}}{-10}
Divide both sides by -10.
x^{2}+\frac{2}{-10}x=-\frac{\frac{5}{4}}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-\frac{1}{5}x=-\frac{\frac{5}{4}}{-10}
Reduce the fraction \frac{2}{-10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{5}x=\frac{1}{8}
Divide -\frac{5}{4} by -10.
x^{2}-\frac{1}{5}x+\left(-\frac{1}{10}\right)^{2}=\frac{1}{8}+\left(-\frac{1}{10}\right)^{2}
Divide -\frac{1}{5}, the coefficient of the x term, by 2 to get -\frac{1}{10}. Then add the square of -\frac{1}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{1}{8}+\frac{1}{100}
Square -\frac{1}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{27}{200}
Add \frac{1}{8} to \frac{1}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{10}\right)^{2}=\frac{27}{200}
Factor x^{2}-\frac{1}{5}x+\frac{1}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{10}\right)^{2}}=\sqrt{\frac{27}{200}}
Take the square root of both sides of the equation.
x-\frac{1}{10}=\frac{3\sqrt{6}}{20} x-\frac{1}{10}=-\frac{3\sqrt{6}}{20}
Simplify.
x=\frac{3\sqrt{6}}{20}+\frac{1}{10} x=-\frac{3\sqrt{6}}{20}+\frac{1}{10}
Add \frac{1}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}