Evaluate
\frac{1213}{2860}\approx 0.424125874
Factor
\frac{1213}{2 ^ {2} \cdot 5 \cdot 11 \cdot 13} = 0.4241258741258741
Share
Copied to clipboard
2\times \frac{1}{10}+4\times \frac{1}{5\times 8}+6\times \frac{1}{8\times 11}+8\times \frac{1}{11\times 13}
Multiply 2 and 5 to get 10.
\frac{2}{10}+4\times \frac{1}{5\times 8}+6\times \frac{1}{8\times 11}+8\times \frac{1}{11\times 13}
Multiply 2 and \frac{1}{10} to get \frac{2}{10}.
\frac{1}{5}+4\times \frac{1}{5\times 8}+6\times \frac{1}{8\times 11}+8\times \frac{1}{11\times 13}
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{5}+4\times \frac{1}{40}+6\times \frac{1}{8\times 11}+8\times \frac{1}{11\times 13}
Multiply 5 and 8 to get 40.
\frac{1}{5}+\frac{4}{40}+6\times \frac{1}{8\times 11}+8\times \frac{1}{11\times 13}
Multiply 4 and \frac{1}{40} to get \frac{4}{40}.
\frac{1}{5}+\frac{1}{10}+6\times \frac{1}{8\times 11}+8\times \frac{1}{11\times 13}
Reduce the fraction \frac{4}{40} to lowest terms by extracting and canceling out 4.
\frac{2}{10}+\frac{1}{10}+6\times \frac{1}{8\times 11}+8\times \frac{1}{11\times 13}
Least common multiple of 5 and 10 is 10. Convert \frac{1}{5} and \frac{1}{10} to fractions with denominator 10.
\frac{2+1}{10}+6\times \frac{1}{8\times 11}+8\times \frac{1}{11\times 13}
Since \frac{2}{10} and \frac{1}{10} have the same denominator, add them by adding their numerators.
\frac{3}{10}+6\times \frac{1}{8\times 11}+8\times \frac{1}{11\times 13}
Add 2 and 1 to get 3.
\frac{3}{10}+6\times \frac{1}{88}+8\times \frac{1}{11\times 13}
Multiply 8 and 11 to get 88.
\frac{3}{10}+\frac{6}{88}+8\times \frac{1}{11\times 13}
Multiply 6 and \frac{1}{88} to get \frac{6}{88}.
\frac{3}{10}+\frac{3}{44}+8\times \frac{1}{11\times 13}
Reduce the fraction \frac{6}{88} to lowest terms by extracting and canceling out 2.
\frac{66}{220}+\frac{15}{220}+8\times \frac{1}{11\times 13}
Least common multiple of 10 and 44 is 220. Convert \frac{3}{10} and \frac{3}{44} to fractions with denominator 220.
\frac{66+15}{220}+8\times \frac{1}{11\times 13}
Since \frac{66}{220} and \frac{15}{220} have the same denominator, add them by adding their numerators.
\frac{81}{220}+8\times \frac{1}{11\times 13}
Add 66 and 15 to get 81.
\frac{81}{220}+8\times \frac{1}{143}
Multiply 11 and 13 to get 143.
\frac{81}{220}+\frac{8}{143}
Multiply 8 and \frac{1}{143} to get \frac{8}{143}.
\frac{1053}{2860}+\frac{160}{2860}
Least common multiple of 220 and 143 is 2860. Convert \frac{81}{220} and \frac{8}{143} to fractions with denominator 2860.
\frac{1053+160}{2860}
Since \frac{1053}{2860} and \frac{160}{2860} have the same denominator, add them by adding their numerators.
\frac{1213}{2860}
Add 1053 and 160 to get 1213.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}