Evaluate
\frac{5}{6}\approx 0.833333333
Factor
\frac{5}{2 \cdot 3} = 0.8333333333333334
Share
Copied to clipboard
\frac{\left(2\times 12+1\right)\times 8}{12\left(5\times 8+5\right)}\times \frac{2\times 4+1}{4}
Divide \frac{2\times 12+1}{12} by \frac{5\times 8+5}{8} by multiplying \frac{2\times 12+1}{12} by the reciprocal of \frac{5\times 8+5}{8}.
\frac{2\left(1+2\times 12\right)}{3\left(5+5\times 8\right)}\times \frac{2\times 4+1}{4}
Cancel out 4 in both numerator and denominator.
\frac{2\left(1+24\right)}{3\left(5+5\times 8\right)}\times \frac{2\times 4+1}{4}
Multiply 2 and 12 to get 24.
\frac{2\times 25}{3\left(5+5\times 8\right)}\times \frac{2\times 4+1}{4}
Add 1 and 24 to get 25.
\frac{50}{3\left(5+5\times 8\right)}\times \frac{2\times 4+1}{4}
Multiply 2 and 25 to get 50.
\frac{50}{3\left(5+40\right)}\times \frac{2\times 4+1}{4}
Multiply 5 and 8 to get 40.
\frac{50}{3\times 45}\times \frac{2\times 4+1}{4}
Add 5 and 40 to get 45.
\frac{50}{135}\times \frac{2\times 4+1}{4}
Multiply 3 and 45 to get 135.
\frac{10}{27}\times \frac{2\times 4+1}{4}
Reduce the fraction \frac{50}{135} to lowest terms by extracting and canceling out 5.
\frac{10}{27}\times \frac{8+1}{4}
Multiply 2 and 4 to get 8.
\frac{10}{27}\times \frac{9}{4}
Add 8 and 1 to get 9.
\frac{10\times 9}{27\times 4}
Multiply \frac{10}{27} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{90}{108}
Do the multiplications in the fraction \frac{10\times 9}{27\times 4}.
\frac{5}{6}
Reduce the fraction \frac{90}{108} to lowest terms by extracting and canceling out 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}