Evaluate
\frac{39}{10}=3.9
Factor
\frac{3 \cdot 13}{2 \cdot 5} = 3\frac{9}{10} = 3.9
Quiz
Arithmetic
5 problems similar to:
2 \frac { 1 } { 12 } + 2 \frac { 1 } { 15 } - \frac { 1 } { 4 }
Share
Copied to clipboard
\frac{24+1}{12}+\frac{2\times 15+1}{15}-\frac{1}{4}
Multiply 2 and 12 to get 24.
\frac{25}{12}+\frac{2\times 15+1}{15}-\frac{1}{4}
Add 24 and 1 to get 25.
\frac{25}{12}+\frac{30+1}{15}-\frac{1}{4}
Multiply 2 and 15 to get 30.
\frac{25}{12}+\frac{31}{15}-\frac{1}{4}
Add 30 and 1 to get 31.
\frac{125}{60}+\frac{124}{60}-\frac{1}{4}
Least common multiple of 12 and 15 is 60. Convert \frac{25}{12} and \frac{31}{15} to fractions with denominator 60.
\frac{125+124}{60}-\frac{1}{4}
Since \frac{125}{60} and \frac{124}{60} have the same denominator, add them by adding their numerators.
\frac{249}{60}-\frac{1}{4}
Add 125 and 124 to get 249.
\frac{83}{20}-\frac{1}{4}
Reduce the fraction \frac{249}{60} to lowest terms by extracting and canceling out 3.
\frac{83}{20}-\frac{5}{20}
Least common multiple of 20 and 4 is 20. Convert \frac{83}{20} and \frac{1}{4} to fractions with denominator 20.
\frac{83-5}{20}
Since \frac{83}{20} and \frac{5}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{78}{20}
Subtract 5 from 83 to get 78.
\frac{39}{10}
Reduce the fraction \frac{78}{20} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}