Solve for x
x = \frac{\sqrt{11} - 1}{2} \approx 1.158312395
x=\frac{-\sqrt{11}-1}{2}\approx -2.158312395
Graph
Share
Copied to clipboard
2=4x\left(x-1\right)+\left(x-1\right)\times 8
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by x-1.
2=4x^{2}-4x+\left(x-1\right)\times 8
Use the distributive property to multiply 4x by x-1.
2=4x^{2}-4x+8x-8
Use the distributive property to multiply x-1 by 8.
2=4x^{2}+4x-8
Combine -4x and 8x to get 4x.
4x^{2}+4x-8=2
Swap sides so that all variable terms are on the left hand side.
4x^{2}+4x-8-2=0
Subtract 2 from both sides.
4x^{2}+4x-10=0
Subtract 2 from -8 to get -10.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-10\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 4 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\left(-10\right)}}{2\times 4}
Square 4.
x=\frac{-4±\sqrt{16-16\left(-10\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-4±\sqrt{16+160}}{2\times 4}
Multiply -16 times -10.
x=\frac{-4±\sqrt{176}}{2\times 4}
Add 16 to 160.
x=\frac{-4±4\sqrt{11}}{2\times 4}
Take the square root of 176.
x=\frac{-4±4\sqrt{11}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{11}-4}{8}
Now solve the equation x=\frac{-4±4\sqrt{11}}{8} when ± is plus. Add -4 to 4\sqrt{11}.
x=\frac{\sqrt{11}-1}{2}
Divide -4+4\sqrt{11} by 8.
x=\frac{-4\sqrt{11}-4}{8}
Now solve the equation x=\frac{-4±4\sqrt{11}}{8} when ± is minus. Subtract 4\sqrt{11} from -4.
x=\frac{-\sqrt{11}-1}{2}
Divide -4-4\sqrt{11} by 8.
x=\frac{\sqrt{11}-1}{2} x=\frac{-\sqrt{11}-1}{2}
The equation is now solved.
2=4x\left(x-1\right)+\left(x-1\right)\times 8
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by x-1.
2=4x^{2}-4x+\left(x-1\right)\times 8
Use the distributive property to multiply 4x by x-1.
2=4x^{2}-4x+8x-8
Use the distributive property to multiply x-1 by 8.
2=4x^{2}+4x-8
Combine -4x and 8x to get 4x.
4x^{2}+4x-8=2
Swap sides so that all variable terms are on the left hand side.
4x^{2}+4x=2+8
Add 8 to both sides.
4x^{2}+4x=10
Add 2 and 8 to get 10.
\frac{4x^{2}+4x}{4}=\frac{10}{4}
Divide both sides by 4.
x^{2}+\frac{4}{4}x=\frac{10}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+x=\frac{10}{4}
Divide 4 by 4.
x^{2}+x=\frac{5}{2}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{5}{2}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{5}{2}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{11}{4}
Add \frac{5}{2} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=\frac{11}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{11}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{11}}{2} x+\frac{1}{2}=-\frac{\sqrt{11}}{2}
Simplify.
x=\frac{\sqrt{11}-1}{2} x=\frac{-\sqrt{11}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}