Verify
false
Share
Copied to clipboard
\frac{1}{3}\left(-8\right)+2=-2
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{-8}{3}+2=-2
Multiply \frac{1}{3} and -8 to get \frac{-8}{3}.
-\frac{8}{3}+2=-2
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
-\frac{8}{3}+\frac{6}{3}=-2
Convert 2 to fraction \frac{6}{3}.
\frac{-8+6}{3}=-2
Since -\frac{8}{3} and \frac{6}{3} have the same denominator, add them by adding their numerators.
-\frac{2}{3}=-2
Add -8 and 6 to get -2.
-\frac{2}{3}=-\frac{6}{3}
Convert -2 to fraction -\frac{6}{3}.
\text{false}
Compare -\frac{2}{3} and -\frac{6}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}