Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(2x^{2}-14x-15)
Multiply 2 and 7 to get 14.
2x^{2}-14x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 2\left(-15\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 2\left(-15\right)}}{2\times 2}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-8\left(-15\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-14\right)±\sqrt{196+120}}{2\times 2}
Multiply -8 times -15.
x=\frac{-\left(-14\right)±\sqrt{316}}{2\times 2}
Add 196 to 120.
x=\frac{-\left(-14\right)±2\sqrt{79}}{2\times 2}
Take the square root of 316.
x=\frac{14±2\sqrt{79}}{2\times 2}
The opposite of -14 is 14.
x=\frac{14±2\sqrt{79}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{79}+14}{4}
Now solve the equation x=\frac{14±2\sqrt{79}}{4} when ± is plus. Add 14 to 2\sqrt{79}.
x=\frac{\sqrt{79}+7}{2}
Divide 14+2\sqrt{79} by 4.
x=\frac{14-2\sqrt{79}}{4}
Now solve the equation x=\frac{14±2\sqrt{79}}{4} when ± is minus. Subtract 2\sqrt{79} from 14.
x=\frac{7-\sqrt{79}}{2}
Divide 14-2\sqrt{79} by 4.
2x^{2}-14x-15=2\left(x-\frac{\sqrt{79}+7}{2}\right)\left(x-\frac{7-\sqrt{79}}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7+\sqrt{79}}{2} for x_{1} and \frac{7-\sqrt{79}}{2} for x_{2}.
2x^{2}-14x-15
Multiply 2 and 7 to get 14.