2 \cdot x ^ { 2 } - \frac { d y } { 1 x } = x ^ { 2 } + y ^ { 2 }
Solve for d
d=-xy+\frac{x^{3}}{y}
y\neq 0\text{ and }x\neq 0
Graph
Share
Copied to clipboard
2x^{2}x-dy=xx^{2}+xy^{2}
Multiply both sides of the equation by x.
2x^{3}-dy=xx^{2}+xy^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
2x^{3}-dy=x^{3}+xy^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-dy=x^{3}+xy^{2}-2x^{3}
Subtract 2x^{3} from both sides.
-dy=-x^{3}+xy^{2}
Combine x^{3} and -2x^{3} to get -x^{3}.
\left(-y\right)d=xy^{2}-x^{3}
The equation is in standard form.
\frac{\left(-y\right)d}{-y}=\frac{x\left(y-x\right)\left(x+y\right)}{-y}
Divide both sides by -y.
d=\frac{x\left(y-x\right)\left(x+y\right)}{-y}
Dividing by -y undoes the multiplication by -y.
d=-\frac{x\left(y-x\right)\left(x+y\right)}{y}
Divide x\left(y-x\right)\left(y+x\right) by -y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}