Solve for x
x=\frac{\sqrt{2485}}{20}+0.25\approx 2.742488716
x=-\frac{\sqrt{2485}}{20}+0.25\approx -2.242488716
Graph
Share
Copied to clipboard
2x^{2}-x=12.3
Subtract x from both sides.
2x^{2}-x-12.3=0
Subtract 12.3 from both sides.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-12.3\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -1 for b, and -12.3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-12.3\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-1\right)±\sqrt{1+98.4}}{2\times 2}
Multiply -8 times -12.3.
x=\frac{-\left(-1\right)±\sqrt{99.4}}{2\times 2}
Add 1 to 98.4.
x=\frac{-\left(-1\right)±\frac{\sqrt{2485}}{5}}{2\times 2}
Take the square root of 99.4.
x=\frac{1±\frac{\sqrt{2485}}{5}}{2\times 2}
The opposite of -1 is 1.
x=\frac{1±\frac{\sqrt{2485}}{5}}{4}
Multiply 2 times 2.
x=\frac{\frac{\sqrt{2485}}{5}+1}{4}
Now solve the equation x=\frac{1±\frac{\sqrt{2485}}{5}}{4} when ± is plus. Add 1 to \frac{\sqrt{2485}}{5}.
x=\frac{\sqrt{2485}}{20}+\frac{1}{4}
Divide 1+\frac{\sqrt{2485}}{5} by 4.
x=\frac{-\frac{\sqrt{2485}}{5}+1}{4}
Now solve the equation x=\frac{1±\frac{\sqrt{2485}}{5}}{4} when ± is minus. Subtract \frac{\sqrt{2485}}{5} from 1.
x=-\frac{\sqrt{2485}}{20}+\frac{1}{4}
Divide 1-\frac{\sqrt{2485}}{5} by 4.
x=\frac{\sqrt{2485}}{20}+\frac{1}{4} x=-\frac{\sqrt{2485}}{20}+\frac{1}{4}
The equation is now solved.
2x^{2}-x=12.3
Subtract x from both sides.
\frac{2x^{2}-x}{2}=\frac{12.3}{2}
Divide both sides by 2.
x^{2}-\frac{1}{2}x=\frac{12.3}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{1}{2}x=6.15
Divide 12.3 by 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=6.15+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=6.15+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{497}{80}
Add 6.15 to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=\frac{497}{80}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{497}{80}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{2485}}{20} x-\frac{1}{4}=-\frac{\sqrt{2485}}{20}
Simplify.
x=\frac{\sqrt{2485}}{20}+\frac{1}{4} x=-\frac{\sqrt{2485}}{20}+\frac{1}{4}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}