Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2a^{2}+11a+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-11±\sqrt{11^{2}-4\times 2\times 10}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-11±\sqrt{121-4\times 2\times 10}}{2\times 2}
Square 11.
a=\frac{-11±\sqrt{121-8\times 10}}{2\times 2}
Multiply -4 times 2.
a=\frac{-11±\sqrt{121-80}}{2\times 2}
Multiply -8 times 10.
a=\frac{-11±\sqrt{41}}{2\times 2}
Add 121 to -80.
a=\frac{-11±\sqrt{41}}{4}
Multiply 2 times 2.
a=\frac{\sqrt{41}-11}{4}
Now solve the equation a=\frac{-11±\sqrt{41}}{4} when ± is plus. Add -11 to \sqrt{41}.
a=\frac{-\sqrt{41}-11}{4}
Now solve the equation a=\frac{-11±\sqrt{41}}{4} when ± is minus. Subtract \sqrt{41} from -11.
2a^{2}+11a+10=2\left(a-\frac{\sqrt{41}-11}{4}\right)\left(a-\frac{-\sqrt{41}-11}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-11+\sqrt{41}}{4} for x_{1} and \frac{-11-\sqrt{41}}{4} for x_{2}.