Solve for P
P = -\frac{29}{2} = -14\frac{1}{2} = -14.5
Share
Copied to clipboard
2P=4-3-2|-7\left(2-2\right)+3\left(2+3\right)|
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -4 is 4.
2P=1-2|-7\left(2-2\right)+3\left(2+3\right)|
Subtract 3 from 4 to get 1.
2P=1-2|-7\times 0+3\left(2+3\right)|
Subtract 2 from 2 to get 0.
2P=1-2|0+3\left(2+3\right)|
Multiply -7 and 0 to get 0.
2P=1-2|0+3\times 5|
Add 2 and 3 to get 5.
2P=1-2|0+15|
Multiply 3 and 5 to get 15.
2P=1-2|15|
Add 0 and 15 to get 15.
2P=1-2\times 15
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 15 is 15.
2P=1-30
Multiply 2 and 15 to get 30.
2P=-29
Subtract 30 from 1 to get -29.
P=\frac{-29}{2}
Divide both sides by 2.
P=-\frac{29}{2}
Fraction \frac{-29}{2} can be rewritten as -\frac{29}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}