Solve for x (complex solution)
x=\frac{\sqrt{5099855070}i}{71430}+\frac{110}{2381}\approx 0.046199076+0.999765779i
x=-\frac{\sqrt{5099855070}i}{71430}+\frac{110}{2381}\approx 0.046199076-0.999765779i
Graph
Share
Copied to clipboard
150\left(1936+4x^{2}-176x\right)+405\times 176\times 4x^{2}=4204
Do the multiplications.
290400+600x^{2}-26400x+405\times 176\times 4x^{2}=4204
Use the distributive property to multiply 150 by 1936+4x^{2}-176x.
290400+600x^{2}-26400x+71280\times 4x^{2}=4204
Multiply 405 and 176 to get 71280.
290400+600x^{2}-26400x+285120x^{2}=4204
Multiply 71280 and 4 to get 285120.
290400+285720x^{2}-26400x=4204
Combine 600x^{2} and 285120x^{2} to get 285720x^{2}.
290400+285720x^{2}-26400x-4204=0
Subtract 4204 from both sides.
286196+285720x^{2}-26400x=0
Subtract 4204 from 290400 to get 286196.
285720x^{2}-26400x+286196=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-26400\right)±\sqrt{\left(-26400\right)^{2}-4\times 285720\times 286196}}{2\times 285720}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 285720 for a, -26400 for b, and 286196 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-26400\right)±\sqrt{696960000-4\times 285720\times 286196}}{2\times 285720}
Square -26400.
x=\frac{-\left(-26400\right)±\sqrt{696960000-1142880\times 286196}}{2\times 285720}
Multiply -4 times 285720.
x=\frac{-\left(-26400\right)±\sqrt{696960000-327087684480}}{2\times 285720}
Multiply -1142880 times 286196.
x=\frac{-\left(-26400\right)±\sqrt{-326390724480}}{2\times 285720}
Add 696960000 to -327087684480.
x=\frac{-\left(-26400\right)±8\sqrt{5099855070}i}{2\times 285720}
Take the square root of -326390724480.
x=\frac{26400±8\sqrt{5099855070}i}{2\times 285720}
The opposite of -26400 is 26400.
x=\frac{26400±8\sqrt{5099855070}i}{571440}
Multiply 2 times 285720.
x=\frac{26400+8\sqrt{5099855070}i}{571440}
Now solve the equation x=\frac{26400±8\sqrt{5099855070}i}{571440} when ± is plus. Add 26400 to 8i\sqrt{5099855070}.
x=\frac{\sqrt{5099855070}i}{71430}+\frac{110}{2381}
Divide 26400+8i\sqrt{5099855070} by 571440.
x=\frac{-8\sqrt{5099855070}i+26400}{571440}
Now solve the equation x=\frac{26400±8\sqrt{5099855070}i}{571440} when ± is minus. Subtract 8i\sqrt{5099855070} from 26400.
x=-\frac{\sqrt{5099855070}i}{71430}+\frac{110}{2381}
Divide 26400-8i\sqrt{5099855070} by 571440.
x=\frac{\sqrt{5099855070}i}{71430}+\frac{110}{2381} x=-\frac{\sqrt{5099855070}i}{71430}+\frac{110}{2381}
The equation is now solved.
150\left(1936+4x^{2}-176x\right)+405\times 176\times 4x^{2}=4204
Do the multiplications.
290400+600x^{2}-26400x+405\times 176\times 4x^{2}=4204
Use the distributive property to multiply 150 by 1936+4x^{2}-176x.
290400+600x^{2}-26400x+71280\times 4x^{2}=4204
Multiply 405 and 176 to get 71280.
290400+600x^{2}-26400x+285120x^{2}=4204
Multiply 71280 and 4 to get 285120.
290400+285720x^{2}-26400x=4204
Combine 600x^{2} and 285120x^{2} to get 285720x^{2}.
285720x^{2}-26400x=4204-290400
Subtract 290400 from both sides.
285720x^{2}-26400x=-286196
Subtract 290400 from 4204 to get -286196.
\frac{285720x^{2}-26400x}{285720}=-\frac{286196}{285720}
Divide both sides by 285720.
x^{2}+\left(-\frac{26400}{285720}\right)x=-\frac{286196}{285720}
Dividing by 285720 undoes the multiplication by 285720.
x^{2}-\frac{220}{2381}x=-\frac{286196}{285720}
Reduce the fraction \frac{-26400}{285720} to lowest terms by extracting and canceling out 120.
x^{2}-\frac{220}{2381}x=-\frac{71549}{71430}
Reduce the fraction \frac{-286196}{285720} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{220}{2381}x+\left(-\frac{110}{2381}\right)^{2}=-\frac{71549}{71430}+\left(-\frac{110}{2381}\right)^{2}
Divide -\frac{220}{2381}, the coefficient of the x term, by 2 to get -\frac{110}{2381}. Then add the square of -\frac{110}{2381} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{220}{2381}x+\frac{12100}{5669161}=-\frac{71549}{71430}+\frac{12100}{5669161}
Square -\frac{110}{2381} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{220}{2381}x+\frac{12100}{5669161}=-\frac{169995169}{170074830}
Add -\frac{71549}{71430} to \frac{12100}{5669161} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{110}{2381}\right)^{2}=-\frac{169995169}{170074830}
Factor x^{2}-\frac{220}{2381}x+\frac{12100}{5669161}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{110}{2381}\right)^{2}}=\sqrt{-\frac{169995169}{170074830}}
Take the square root of both sides of the equation.
x-\frac{110}{2381}=\frac{\sqrt{5099855070}i}{71430} x-\frac{110}{2381}=-\frac{\sqrt{5099855070}i}{71430}
Simplify.
x=\frac{\sqrt{5099855070}i}{71430}+\frac{110}{2381} x=-\frac{\sqrt{5099855070}i}{71430}+\frac{110}{2381}
Add \frac{110}{2381} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}