Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

14=2\times 4t+8\times 8t^{2}
Multiply 2 and 7 to get 14.
14=8t+64t^{2}
Do the multiplications.
8t+64t^{2}=14
Swap sides so that all variable terms are on the left hand side.
8t+64t^{2}-14=0
Subtract 14 from both sides.
64t^{2}+8t-14=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-8±\sqrt{8^{2}-4\times 64\left(-14\right)}}{2\times 64}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 64 for a, 8 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-8±\sqrt{64-4\times 64\left(-14\right)}}{2\times 64}
Square 8.
t=\frac{-8±\sqrt{64-256\left(-14\right)}}{2\times 64}
Multiply -4 times 64.
t=\frac{-8±\sqrt{64+3584}}{2\times 64}
Multiply -256 times -14.
t=\frac{-8±\sqrt{3648}}{2\times 64}
Add 64 to 3584.
t=\frac{-8±8\sqrt{57}}{2\times 64}
Take the square root of 3648.
t=\frac{-8±8\sqrt{57}}{128}
Multiply 2 times 64.
t=\frac{8\sqrt{57}-8}{128}
Now solve the equation t=\frac{-8±8\sqrt{57}}{128} when ± is plus. Add -8 to 8\sqrt{57}.
t=\frac{\sqrt{57}-1}{16}
Divide -8+8\sqrt{57} by 128.
t=\frac{-8\sqrt{57}-8}{128}
Now solve the equation t=\frac{-8±8\sqrt{57}}{128} when ± is minus. Subtract 8\sqrt{57} from -8.
t=\frac{-\sqrt{57}-1}{16}
Divide -8-8\sqrt{57} by 128.
t=\frac{\sqrt{57}-1}{16} t=\frac{-\sqrt{57}-1}{16}
The equation is now solved.
14=2\times 4t+8\times 8t^{2}
Multiply 2 and 7 to get 14.
14=8t+64t^{2}
Do the multiplications.
8t+64t^{2}=14
Swap sides so that all variable terms are on the left hand side.
64t^{2}+8t=14
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{64t^{2}+8t}{64}=\frac{14}{64}
Divide both sides by 64.
t^{2}+\frac{8}{64}t=\frac{14}{64}
Dividing by 64 undoes the multiplication by 64.
t^{2}+\frac{1}{8}t=\frac{14}{64}
Reduce the fraction \frac{8}{64} to lowest terms by extracting and canceling out 8.
t^{2}+\frac{1}{8}t=\frac{7}{32}
Reduce the fraction \frac{14}{64} to lowest terms by extracting and canceling out 2.
t^{2}+\frac{1}{8}t+\left(\frac{1}{16}\right)^{2}=\frac{7}{32}+\left(\frac{1}{16}\right)^{2}
Divide \frac{1}{8}, the coefficient of the x term, by 2 to get \frac{1}{16}. Then add the square of \frac{1}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{1}{8}t+\frac{1}{256}=\frac{7}{32}+\frac{1}{256}
Square \frac{1}{16} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{1}{8}t+\frac{1}{256}=\frac{57}{256}
Add \frac{7}{32} to \frac{1}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{1}{16}\right)^{2}=\frac{57}{256}
Factor t^{2}+\frac{1}{8}t+\frac{1}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{1}{16}\right)^{2}}=\sqrt{\frac{57}{256}}
Take the square root of both sides of the equation.
t+\frac{1}{16}=\frac{\sqrt{57}}{16} t+\frac{1}{16}=-\frac{\sqrt{57}}{16}
Simplify.
t=\frac{\sqrt{57}-1}{16} t=\frac{-\sqrt{57}-1}{16}
Subtract \frac{1}{16} from both sides of the equation.