2 \cdot 1 - ( \frac { 1 } { 15 } + \frac { 1 } { 21 } ) \times 1,5
Evaluate
\frac{64}{35}\approx 1,828571429
Factor
\frac{2 ^ {6}}{5 \cdot 7} = 1\frac{29}{35} = 1.8285714285714285
Share
Copied to clipboard
2-\left(\frac{1}{15}+\frac{1}{21}\right)\times 1,5
Multiply 2 and 1 to get 2.
2-\left(\frac{7}{105}+\frac{5}{105}\right)\times 1,5
Least common multiple of 15 and 21 is 105. Convert \frac{1}{15} and \frac{1}{21} to fractions with denominator 105.
2-\frac{7+5}{105}\times 1,5
Since \frac{7}{105} and \frac{5}{105} have the same denominator, add them by adding their numerators.
2-\frac{12}{105}\times 1,5
Add 7 and 5 to get 12.
2-\frac{4}{35}\times 1,5
Reduce the fraction \frac{12}{105} to lowest terms by extracting and canceling out 3.
2-\frac{4}{35}\times \frac{3}{2}
Convert decimal number 1,5 to fraction \frac{15}{10}. Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
2-\frac{4\times 3}{35\times 2}
Multiply \frac{4}{35} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
2-\frac{12}{70}
Do the multiplications in the fraction \frac{4\times 3}{35\times 2}.
2-\frac{6}{35}
Reduce the fraction \frac{12}{70} to lowest terms by extracting and canceling out 2.
\frac{70}{35}-\frac{6}{35}
Convert 2 to fraction \frac{70}{35}.
\frac{70-6}{35}
Since \frac{70}{35} and \frac{6}{35} have the same denominator, subtract them by subtracting their numerators.
\frac{64}{35}
Subtract 6 from 70 to get 64.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}