Solve for x
x = \frac{64}{13} = 4\frac{12}{13} \approx 4.923076923
Graph
Share
Copied to clipboard
2\left(x^{2}-20x+100\right)-3\left(x-4\right)=2x^{2}-4\left(x-5\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-10\right)^{2}.
2x^{2}-40x+200-3\left(x-4\right)=2x^{2}-4\left(x-5\right)
Use the distributive property to multiply 2 by x^{2}-20x+100.
2x^{2}-40x+200-3x+12=2x^{2}-4\left(x-5\right)
Use the distributive property to multiply -3 by x-4.
2x^{2}-43x+200+12=2x^{2}-4\left(x-5\right)
Combine -40x and -3x to get -43x.
2x^{2}-43x+212=2x^{2}-4\left(x-5\right)
Add 200 and 12 to get 212.
2x^{2}-43x+212=2x^{2}-4x+20
Use the distributive property to multiply -4 by x-5.
2x^{2}-43x+212-2x^{2}=-4x+20
Subtract 2x^{2} from both sides.
-43x+212=-4x+20
Combine 2x^{2} and -2x^{2} to get 0.
-43x+212+4x=20
Add 4x to both sides.
-39x+212=20
Combine -43x and 4x to get -39x.
-39x=20-212
Subtract 212 from both sides.
-39x=-192
Subtract 212 from 20 to get -192.
x=\frac{-192}{-39}
Divide both sides by -39.
x=\frac{64}{13}
Reduce the fraction \frac{-192}{-39} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}