Solve for a
a = \frac{\sqrt{265} - 1}{4} \approx 3.819705149
a=\frac{-\sqrt{265}-1}{4}\approx -4.319705149
Share
Copied to clipboard
2a^{2}-18+a=15
Use the distributive property to multiply 2 by a^{2}-9.
2a^{2}-18+a-15=0
Subtract 15 from both sides.
2a^{2}-33+a=0
Subtract 15 from -18 to get -33.
2a^{2}+a-33=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-1±\sqrt{1^{2}-4\times 2\left(-33\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 1 for b, and -33 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-1±\sqrt{1-4\times 2\left(-33\right)}}{2\times 2}
Square 1.
a=\frac{-1±\sqrt{1-8\left(-33\right)}}{2\times 2}
Multiply -4 times 2.
a=\frac{-1±\sqrt{1+264}}{2\times 2}
Multiply -8 times -33.
a=\frac{-1±\sqrt{265}}{2\times 2}
Add 1 to 264.
a=\frac{-1±\sqrt{265}}{4}
Multiply 2 times 2.
a=\frac{\sqrt{265}-1}{4}
Now solve the equation a=\frac{-1±\sqrt{265}}{4} when ± is plus. Add -1 to \sqrt{265}.
a=\frac{-\sqrt{265}-1}{4}
Now solve the equation a=\frac{-1±\sqrt{265}}{4} when ± is minus. Subtract \sqrt{265} from -1.
a=\frac{\sqrt{265}-1}{4} a=\frac{-\sqrt{265}-1}{4}
The equation is now solved.
2a^{2}-18+a=15
Use the distributive property to multiply 2 by a^{2}-9.
2a^{2}+a=15+18
Add 18 to both sides.
2a^{2}+a=33
Add 15 and 18 to get 33.
\frac{2a^{2}+a}{2}=\frac{33}{2}
Divide both sides by 2.
a^{2}+\frac{1}{2}a=\frac{33}{2}
Dividing by 2 undoes the multiplication by 2.
a^{2}+\frac{1}{2}a+\left(\frac{1}{4}\right)^{2}=\frac{33}{2}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{1}{2}a+\frac{1}{16}=\frac{33}{2}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{1}{2}a+\frac{1}{16}=\frac{265}{16}
Add \frac{33}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{1}{4}\right)^{2}=\frac{265}{16}
Factor a^{2}+\frac{1}{2}a+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{1}{4}\right)^{2}}=\sqrt{\frac{265}{16}}
Take the square root of both sides of the equation.
a+\frac{1}{4}=\frac{\sqrt{265}}{4} a+\frac{1}{4}=-\frac{\sqrt{265}}{4}
Simplify.
a=\frac{\sqrt{265}-1}{4} a=\frac{-\sqrt{265}-1}{4}
Subtract \frac{1}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}