Solve for x
x = \frac{9}{2} = 4\frac{1}{2} = 4.5
Graph
Share
Copied to clipboard
2\left(1-3x^{-1}\right)^{-1}=1+5
Add 5 to both sides.
2\left(1-3x^{-1}\right)^{-1}=6
Add 1 and 5 to get 6.
\left(1-3x^{-1}\right)^{-1}=\frac{6}{2}
Divide both sides by 2.
\left(1-3x^{-1}\right)^{-1}=3
Divide 6 by 2 to get 3.
\frac{1}{1-3\times \frac{1}{x}}=3
Reorder the terms.
\frac{1}{1+\frac{-3}{x}}=3
Express -3\times \frac{1}{x} as a single fraction.
\frac{1}{\frac{x}{x}+\frac{-3}{x}}=3
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{1}{\frac{x-3}{x}}=3
Since \frac{x}{x} and \frac{-3}{x} have the same denominator, add them by adding their numerators.
\frac{x}{x-3}=3
Variable x cannot be equal to 0 since division by zero is not defined. Divide 1 by \frac{x-3}{x} by multiplying 1 by the reciprocal of \frac{x-3}{x}.
x=3\left(x-3\right)
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by x-3.
x=3x-9
Use the distributive property to multiply 3 by x-3.
x-3x=-9
Subtract 3x from both sides.
-2x=-9
Combine x and -3x to get -2x.
x=\frac{-9}{-2}
Divide both sides by -2.
x=\frac{9}{2}
Fraction \frac{-9}{-2} can be simplified to \frac{9}{2} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}