Solve for x
x=\frac{5}{9}-\frac{16}{45y}
y\neq 0
Solve for y
y=-\frac{16}{5\left(9x-5\right)}
x\neq \frac{5}{9}
Graph
Share
Copied to clipboard
2\left(-1.6\right)=9xy+y\left(-5\right)
Multiply both sides of the equation by y.
-3.2=9xy+y\left(-5\right)
Multiply 2 and -1.6 to get -3.2.
9xy+y\left(-5\right)=-3.2
Swap sides so that all variable terms are on the left hand side.
9xy=-3.2-y\left(-5\right)
Subtract y\left(-5\right) from both sides.
9xy=-3.2+5y
Multiply -1 and -5 to get 5.
9yx=5y-3.2
The equation is in standard form.
\frac{9yx}{9y}=\frac{5y-3.2}{9y}
Divide both sides by 9y.
x=\frac{5y-3.2}{9y}
Dividing by 9y undoes the multiplication by 9y.
x=\frac{5}{9}-\frac{16}{45y}
Divide 5y-3.2 by 9y.
2\left(-1.6\right)=9xy+y\left(-5\right)
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
-3.2=9xy+y\left(-5\right)
Multiply 2 and -1.6 to get -3.2.
9xy+y\left(-5\right)=-3.2
Swap sides so that all variable terms are on the left hand side.
\left(9x-5\right)y=-3.2
Combine all terms containing y.
\frac{\left(9x-5\right)y}{9x-5}=-\frac{3.2}{9x-5}
Divide both sides by -5+9x.
y=-\frac{3.2}{9x-5}
Dividing by -5+9x undoes the multiplication by -5+9x.
y=-\frac{16}{5\left(9x-5\right)}
Divide -3.2 by -5+9x.
y=-\frac{16}{5\left(9x-5\right)}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}