Microsoft Math Solver
Solve
Practice
Download
Solve
Practice
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Download
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Solve
algebra
trigonometry
statistics
calculus
matrices
variables
list
Evaluate
10
View solution steps
Solution Steps
2 \cdot \sqrt[ 3 ] { - 125 } + 4 \cdot \sqrt[ 5 ] { 32 } - 6 \cdot \sqrt[ 3 ] { - 8 }
Calculate \sqrt[3]{-125} and get -5.
2\left(-5\right)+4\sqrt[5]{32}-6\sqrt[3]{-8}
Multiply 2 and -5 to get -10.
-10+4\sqrt[5]{32}-6\sqrt[3]{-8}
Calculate \sqrt[5]{32} and get 2.
-10+4\times 2-6\sqrt[3]{-8}
Multiply 4 and 2 to get 8.
-10+8-6\sqrt[3]{-8}
Add -10 and 8 to get -2.
-2-6\sqrt[3]{-8}
Calculate \sqrt[3]{-8} and get -2.
-2-6\left(-2\right)
Multiply -6 and -2 to get 12.
-2+12
Add -2 and 12 to get 10.
10
Factor
2\times 5
Quiz
Arithmetic
5 problems similar to:
2 \cdot \sqrt[ 3 ] { - 125 } + 4 \cdot \sqrt[ 5 ] { 32 } - 6 \cdot \sqrt[ 3 ] { - 8 }
Similar Problems from Web Search
The value of \sqrt{1-\sqrt{1+\sqrt{1-\sqrt{1+\cdots\sqrt{1-\sqrt{1+1}}}}}}?
https://math.stackexchange.com/questions/441473/the-value-of-sqrt1-sqrt1-sqrt1-sqrt1-cdots-sqrt1-sqrt11
First of all let's assume the series is convergent. Looking for fixed points we have: x=\sqrt{1-\sqrt{1+x}} Now we will try to solve this equation. First squaring both sides: 1-x^2=\sqrt{1+x} \\ \left(\left( 1-x\right)\left( 1+x\right) \right)^2=1+x ...
Find the sum \sqrt{5+\sqrt{11+\sqrt{19+\sqrt{29+\sqrt{41+\cdots}}}}}
https://math.stackexchange.com/questions/3080127/find-the-sum-sqrt5-sqrt11-sqrt19-sqrt29-sqrt41-cdots
We may adopt the technique for Ramanujan's infinite radical . Let p(x) = x^2 + 3x + 1 and define F : [0, \infty) \to [0, \infty) by F(x) = \sqrt{p(x) + \sqrt{p(x+1) + \sqrt{p(x+2) + \cdots }}} ...
How do you simplify \displaystyle{\left(\sqrt{{{2}}}\cdot\sqrt{{{2}}}\right)}+{\left(\sqrt{{{2}}}\cdot-\sqrt{{{2}}}\right)}+{\left({0}\cdot{0}\right)} ?
https://socratic.org/questions/how-do-you-simplify-sqrt-2-sqrt-2-sqrt-2-sqrt-2-0-0
\displaystyle={0} Explanation: \displaystyle{\left(\sqrt{{2}}\cdot\sqrt{{2}}\right)} + \displaystyle{\left(\sqrt{{2}}\cdot-\sqrt{{2}}\right)} + \displaystyle{\left({0}\cdot{0}\right)} ...
How to prove :\sqrt{1!\sqrt{2!\sqrt{3!\sqrt{\cdots\sqrt{n!}}}}} <3
https://math.stackexchange.com/questions/2593066/how-to-prove-sqrt1-sqrt2-sqrt3-sqrt-cdots-sqrtn-3
For any n > 0, we have s_n \stackrel{def}{=} \log\left(\sqrt{1!\sqrt{2!\sqrt{3!\sqrt{\cdots\sqrt{n!}}}}}\right) = \sum_{k=1}^n \frac{\log(k!)}{2^k} = \sum_{k=1}^n \frac{1}{2^k}\sum_{j=1}^k\log(j) ...
Ramanujan's Infinite Root
https://math.stackexchange.com/questions/2381181/ramanujans-infinite-root
There's no contradiction, there's just ill-defined terms. The row 3=\sqrt{1+2\cdot \sqrt{1+3 \cdot \sqrt{1+4\cdot \sqrt36}} } is correct, but the following \vdots 3=\sqrt{1+2\cdot \sqrt{1+3 \cdot \sqrt{1+4\cdot \sqrt{1+ \cdots}}} } ...
Field Show that F is a field under + and \cdot and F = \{a + b\sqrt{3}\} | a, b \in \mathbb Q\} [duplicate]
https://math.stackexchange.com/questions/2423511/field-show-that-f-is-a-field-under-and-cdot-and-f-a-b-sqrt3-a
The axiom you linked to are those of a vector space , not those for a field. It is true (but it is probably not your intention) that F is a vector space with scalar field \mathbb{Q}: F is ...
More Items
Share
Copy
Copied to clipboard
2\left(-5\right)+4\sqrt[5]{32}-6\sqrt[3]{-8}
Calculate \sqrt[3]{-125} and get -5.
-10+4\sqrt[5]{32}-6\sqrt[3]{-8}
Multiply 2 and -5 to get -10.
-10+4\times 2-6\sqrt[3]{-8}
Calculate \sqrt[5]{32} and get 2.
-10+8-6\sqrt[3]{-8}
Multiply 4 and 2 to get 8.
-2-6\sqrt[3]{-8}
Add -10 and 8 to get -2.
-2-6\left(-2\right)
Calculate \sqrt[3]{-8} and get -2.
-2+12
Multiply -6 and -2 to get 12.
10
Add -2 and 12 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}
Back to top