Solve for x
x=\frac{13-8\sqrt{3}}{3}\approx -0.28546882
Graph
Share
Copied to clipboard
2\sqrt{x+1}=3-\sqrt{x+2}
Subtract \sqrt{x+2} from both sides of the equation.
\left(2\sqrt{x+1}\right)^{2}=\left(3-\sqrt{x+2}\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{x+1}\right)^{2}=\left(3-\sqrt{x+2}\right)^{2}
Expand \left(2\sqrt{x+1}\right)^{2}.
4\left(\sqrt{x+1}\right)^{2}=\left(3-\sqrt{x+2}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(x+1\right)=\left(3-\sqrt{x+2}\right)^{2}
Calculate \sqrt{x+1} to the power of 2 and get x+1.
4x+4=\left(3-\sqrt{x+2}\right)^{2}
Use the distributive property to multiply 4 by x+1.
4x+4=9-6\sqrt{x+2}+\left(\sqrt{x+2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{x+2}\right)^{2}.
4x+4=9-6\sqrt{x+2}+x+2
Calculate \sqrt{x+2} to the power of 2 and get x+2.
4x+4=11-6\sqrt{x+2}+x
Add 9 and 2 to get 11.
4x+4-\left(11+x\right)=-6\sqrt{x+2}
Subtract 11+x from both sides of the equation.
4x+4-11-x=-6\sqrt{x+2}
To find the opposite of 11+x, find the opposite of each term.
4x-7-x=-6\sqrt{x+2}
Subtract 11 from 4 to get -7.
3x-7=-6\sqrt{x+2}
Combine 4x and -x to get 3x.
\left(3x-7\right)^{2}=\left(-6\sqrt{x+2}\right)^{2}
Square both sides of the equation.
9x^{2}-42x+49=\left(-6\sqrt{x+2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-7\right)^{2}.
9x^{2}-42x+49=\left(-6\right)^{2}\left(\sqrt{x+2}\right)^{2}
Expand \left(-6\sqrt{x+2}\right)^{2}.
9x^{2}-42x+49=36\left(\sqrt{x+2}\right)^{2}
Calculate -6 to the power of 2 and get 36.
9x^{2}-42x+49=36\left(x+2\right)
Calculate \sqrt{x+2} to the power of 2 and get x+2.
9x^{2}-42x+49=36x+72
Use the distributive property to multiply 36 by x+2.
9x^{2}-42x+49-36x=72
Subtract 36x from both sides.
9x^{2}-78x+49=72
Combine -42x and -36x to get -78x.
9x^{2}-78x+49-72=0
Subtract 72 from both sides.
9x^{2}-78x-23=0
Subtract 72 from 49 to get -23.
x=\frac{-\left(-78\right)±\sqrt{\left(-78\right)^{2}-4\times 9\left(-23\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -78 for b, and -23 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-78\right)±\sqrt{6084-4\times 9\left(-23\right)}}{2\times 9}
Square -78.
x=\frac{-\left(-78\right)±\sqrt{6084-36\left(-23\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-78\right)±\sqrt{6084+828}}{2\times 9}
Multiply -36 times -23.
x=\frac{-\left(-78\right)±\sqrt{6912}}{2\times 9}
Add 6084 to 828.
x=\frac{-\left(-78\right)±48\sqrt{3}}{2\times 9}
Take the square root of 6912.
x=\frac{78±48\sqrt{3}}{2\times 9}
The opposite of -78 is 78.
x=\frac{78±48\sqrt{3}}{18}
Multiply 2 times 9.
x=\frac{48\sqrt{3}+78}{18}
Now solve the equation x=\frac{78±48\sqrt{3}}{18} when ± is plus. Add 78 to 48\sqrt{3}.
x=\frac{8\sqrt{3}+13}{3}
Divide 78+48\sqrt{3} by 18.
x=\frac{78-48\sqrt{3}}{18}
Now solve the equation x=\frac{78±48\sqrt{3}}{18} when ± is minus. Subtract 48\sqrt{3} from 78.
x=\frac{13-8\sqrt{3}}{3}
Divide 78-48\sqrt{3} by 18.
x=\frac{8\sqrt{3}+13}{3} x=\frac{13-8\sqrt{3}}{3}
The equation is now solved.
2\sqrt{\frac{8\sqrt{3}+13}{3}+1}+\sqrt{\frac{8\sqrt{3}+13}{3}+2}=3
Substitute \frac{8\sqrt{3}+13}{3} for x in the equation 2\sqrt{x+1}+\sqrt{x+2}=3.
5+\frac{8}{3}\times 3^{\frac{1}{2}}=3
Simplify. The value x=\frac{8\sqrt{3}+13}{3} does not satisfy the equation.
2\sqrt{\frac{13-8\sqrt{3}}{3}+1}+\sqrt{\frac{13-8\sqrt{3}}{3}+2}=3
Substitute \frac{13-8\sqrt{3}}{3} for x in the equation 2\sqrt{x+1}+\sqrt{x+2}=3.
3=3
Simplify. The value x=\frac{13-8\sqrt{3}}{3} satisfies the equation.
x=\frac{13-8\sqrt{3}}{3}
Equation 2\sqrt{x+1}=-\sqrt{x+2}+3 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}