Solve for a
\left\{\begin{matrix}a=\frac{\left(\frac{1500}{353}-\frac{540}{353}i\right)\alpha }{\pi dr}\text{, }&r\neq 0\text{ and }d\neq 0\\a\in \mathrm{C}\text{, }&\left(d=0\text{ or }r=0\right)\text{ and }\alpha =0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=\frac{\left(\frac{1500}{353}-\frac{540}{353}i\right)\alpha }{\pi ar}\text{, }&a\neq 0\text{ and }r\neq 0\\d\in \mathrm{C}\text{, }&\left(r=0\text{ or }a=0\right)\text{ and }\alpha =0\end{matrix}\right.
Share
Copied to clipboard
120\alpha =5\times 5\pi rad+3\times 3\pi irad
Multiply both sides of the equation by 60, the least common multiple of 12,20.
120\alpha =25\pi rad+9\pi irad
Do the multiplications.
120\alpha =25\pi rad+9i\pi rad
Multiply 9 and i to get 9i.
120\alpha =\left(25+9i\right)\pi rad
Combine 25\pi rad and 9i\pi rad to get \left(25+9i\right)\pi rad.
\left(25+9i\right)\pi rad=120\alpha
Swap sides so that all variable terms are on the left hand side.
\pi \left(25+9i\right)dra=120\alpha
The equation is in standard form.
\frac{\pi \left(25+9i\right)dra}{\pi \left(25+9i\right)dr}=\frac{120\alpha }{\pi \left(25+9i\right)dr}
Divide both sides by \left(25+9i\right)\pi rd.
a=\frac{120\alpha }{\pi \left(25+9i\right)dr}
Dividing by \left(25+9i\right)\pi rd undoes the multiplication by \left(25+9i\right)\pi rd.
a=\frac{\left(\frac{1500}{353}-\frac{540}{353}i\right)\alpha }{\pi dr}
Divide 120\alpha by \left(25+9i\right)\pi rd.
120\alpha =5\times 5\pi rad+3\times 3\pi irad
Multiply both sides of the equation by 60, the least common multiple of 12,20.
120\alpha =25\pi rad+9\pi irad
Do the multiplications.
120\alpha =25\pi rad+9i\pi rad
Multiply 9 and i to get 9i.
120\alpha =\left(25+9i\right)\pi rad
Combine 25\pi rad and 9i\pi rad to get \left(25+9i\right)\pi rad.
\left(25+9i\right)\pi rad=120\alpha
Swap sides so that all variable terms are on the left hand side.
\pi \left(25+9i\right)ard=120\alpha
The equation is in standard form.
\frac{\pi \left(25+9i\right)ard}{\pi \left(25+9i\right)ar}=\frac{120\alpha }{\pi \left(25+9i\right)ar}
Divide both sides by \left(25+9i\right)\pi ra.
d=\frac{120\alpha }{\pi \left(25+9i\right)ar}
Dividing by \left(25+9i\right)\pi ra undoes the multiplication by \left(25+9i\right)\pi ra.
d=\frac{\left(\frac{1500}{353}-\frac{540}{353}i\right)\alpha }{\pi ar}
Divide 120\alpha by \left(25+9i\right)\pi ra.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}