Skip to main content
Solve for a
Tick mark Image
Solve for d
Tick mark Image

Similar Problems from Web Search

Share

120\alpha =5\times 5\pi rad+3\times 3\pi irad
Multiply both sides of the equation by 60, the least common multiple of 12,20.
120\alpha =25\pi rad+9\pi irad
Do the multiplications.
120\alpha =25\pi rad+9i\pi rad
Multiply 9 and i to get 9i.
120\alpha =\left(25+9i\right)\pi rad
Combine 25\pi rad and 9i\pi rad to get \left(25+9i\right)\pi rad.
\left(25+9i\right)\pi rad=120\alpha
Swap sides so that all variable terms are on the left hand side.
\pi \left(25+9i\right)dra=120\alpha
The equation is in standard form.
\frac{\pi \left(25+9i\right)dra}{\pi \left(25+9i\right)dr}=\frac{120\alpha }{\pi \left(25+9i\right)dr}
Divide both sides by \left(25+9i\right)\pi rd.
a=\frac{120\alpha }{\pi \left(25+9i\right)dr}
Dividing by \left(25+9i\right)\pi rd undoes the multiplication by \left(25+9i\right)\pi rd.
a=\frac{\left(\frac{1500}{353}-\frac{540}{353}i\right)\alpha }{\pi dr}
Divide 120\alpha by \left(25+9i\right)\pi rd.
120\alpha =5\times 5\pi rad+3\times 3\pi irad
Multiply both sides of the equation by 60, the least common multiple of 12,20.
120\alpha =25\pi rad+9\pi irad
Do the multiplications.
120\alpha =25\pi rad+9i\pi rad
Multiply 9 and i to get 9i.
120\alpha =\left(25+9i\right)\pi rad
Combine 25\pi rad and 9i\pi rad to get \left(25+9i\right)\pi rad.
\left(25+9i\right)\pi rad=120\alpha
Swap sides so that all variable terms are on the left hand side.
\pi \left(25+9i\right)ard=120\alpha
The equation is in standard form.
\frac{\pi \left(25+9i\right)ard}{\pi \left(25+9i\right)ar}=\frac{120\alpha }{\pi \left(25+9i\right)ar}
Divide both sides by \left(25+9i\right)\pi ra.
d=\frac{120\alpha }{\pi \left(25+9i\right)ar}
Dividing by \left(25+9i\right)\pi ra undoes the multiplication by \left(25+9i\right)\pi ra.
d=\frac{\left(\frac{1500}{353}-\frac{540}{353}i\right)\alpha }{\pi ar}
Divide 120\alpha by \left(25+9i\right)\pi ra.