2 \% ( 3 x + 5 ) - 5 \% ( 2 x - 1 ) = 0
Solve for x
x = \frac{15}{4} = 3\frac{3}{4} = 3.75
Graph
Share
Copied to clipboard
\frac{1}{50}\left(3x+5\right)-\frac{5}{100}\left(2x-1\right)=0
Reduce the fraction \frac{2}{100} to lowest terms by extracting and canceling out 2.
\frac{1}{50}\times 3x+\frac{1}{50}\times 5-\frac{5}{100}\left(2x-1\right)=0
Use the distributive property to multiply \frac{1}{50} by 3x+5.
\frac{3}{50}x+\frac{1}{50}\times 5-\frac{5}{100}\left(2x-1\right)=0
Multiply \frac{1}{50} and 3 to get \frac{3}{50}.
\frac{3}{50}x+\frac{5}{50}-\frac{5}{100}\left(2x-1\right)=0
Multiply \frac{1}{50} and 5 to get \frac{5}{50}.
\frac{3}{50}x+\frac{1}{10}-\frac{5}{100}\left(2x-1\right)=0
Reduce the fraction \frac{5}{50} to lowest terms by extracting and canceling out 5.
\frac{3}{50}x+\frac{1}{10}-\frac{1}{20}\left(2x-1\right)=0
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
\frac{3}{50}x+\frac{1}{10}-\frac{1}{20}\times 2x-\frac{1}{20}\left(-1\right)=0
Use the distributive property to multiply -\frac{1}{20} by 2x-1.
\frac{3}{50}x+\frac{1}{10}+\frac{-2}{20}x-\frac{1}{20}\left(-1\right)=0
Express -\frac{1}{20}\times 2 as a single fraction.
\frac{3}{50}x+\frac{1}{10}-\frac{1}{10}x-\frac{1}{20}\left(-1\right)=0
Reduce the fraction \frac{-2}{20} to lowest terms by extracting and canceling out 2.
\frac{3}{50}x+\frac{1}{10}-\frac{1}{10}x+\frac{1}{20}=0
Multiply -\frac{1}{20} and -1 to get \frac{1}{20}.
-\frac{1}{25}x+\frac{1}{10}+\frac{1}{20}=0
Combine \frac{3}{50}x and -\frac{1}{10}x to get -\frac{1}{25}x.
-\frac{1}{25}x+\frac{2}{20}+\frac{1}{20}=0
Least common multiple of 10 and 20 is 20. Convert \frac{1}{10} and \frac{1}{20} to fractions with denominator 20.
-\frac{1}{25}x+\frac{2+1}{20}=0
Since \frac{2}{20} and \frac{1}{20} have the same denominator, add them by adding their numerators.
-\frac{1}{25}x+\frac{3}{20}=0
Add 2 and 1 to get 3.
-\frac{1}{25}x=-\frac{3}{20}
Subtract \frac{3}{20} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{3}{20}\left(-25\right)
Multiply both sides by -25, the reciprocal of -\frac{1}{25}.
x=\frac{-3\left(-25\right)}{20}
Express -\frac{3}{20}\left(-25\right) as a single fraction.
x=\frac{75}{20}
Multiply -3 and -25 to get 75.
x=\frac{15}{4}
Reduce the fraction \frac{75}{20} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}