2 \% +(7 \% -2 \% ) \times 1.25
Evaluate
0.0825
Factor
\frac{3 \cdot 11}{2 ^ {4} \cdot 5 ^ {2}} = 0.0825
Share
Copied to clipboard
\frac{1}{50}+\left(\frac{7}{100}-\frac{2}{100}\right)\times 1.25
Reduce the fraction \frac{2}{100} to lowest terms by extracting and canceling out 2.
\frac{1}{50}+\frac{7-2}{100}\times 1.25
Since \frac{7}{100} and \frac{2}{100} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{50}+\frac{5}{100}\times 1.25
Subtract 2 from 7 to get 5.
\frac{1}{50}+\frac{1}{20}\times 1.25
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
\frac{1}{50}+\frac{1}{20}\times \frac{5}{4}
Convert decimal number 1.25 to fraction \frac{125}{100}. Reduce the fraction \frac{125}{100} to lowest terms by extracting and canceling out 25.
\frac{1}{50}+\frac{1\times 5}{20\times 4}
Multiply \frac{1}{20} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{50}+\frac{5}{80}
Do the multiplications in the fraction \frac{1\times 5}{20\times 4}.
\frac{1}{50}+\frac{1}{16}
Reduce the fraction \frac{5}{80} to lowest terms by extracting and canceling out 5.
\frac{8}{400}+\frac{25}{400}
Least common multiple of 50 and 16 is 400. Convert \frac{1}{50} and \frac{1}{16} to fractions with denominator 400.
\frac{8+25}{400}
Since \frac{8}{400} and \frac{25}{400} have the same denominator, add them by adding their numerators.
\frac{33}{400}
Add 8 and 25 to get 33.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}