Solve for y
y = \frac{\log_{2} {(127)}}{3} = 2.3295615622573886
Solve for x
x\in \mathrm{R}
y = \frac{\log_{2} {(127)}}{3} = 2.3295615622573886
Graph
Share
Copied to clipboard
2^{x-x+7}=\left(2^{3}\right)^{y}+1
To find the opposite of x-7, find the opposite of each term.
2^{7}=\left(2^{3}\right)^{y}+1
Combine x and -x to get 0.
128=\left(2^{3}\right)^{y}+1
Calculate 2 to the power of 7 and get 128.
128=8^{y}+1
Calculate 2 to the power of 3 and get 8.
8^{y}+1=128
Swap sides so that all variable terms are on the left hand side.
8^{y}=127
Subtract 1 from both sides of the equation.
\log(8^{y})=\log(127)
Take the logarithm of both sides of the equation.
y\log(8)=\log(127)
The logarithm of a number raised to a power is the power times the logarithm of the number.
y=\frac{\log(127)}{\log(8)}
Divide both sides by \log(8).
y=\log_{8}\left(127\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}