Solve for h (complex solution)
h=\frac{8\times \left(\frac{1}{25}\right)^{x}}{25}
Solve for h
h=\frac{8}{25\times 5^{2x}}
Solve for x
x=\frac{-\ln(h)+\ln(\frac{8}{25})}{2\ln(5)}
h>0
Graph
Share
Copied to clipboard
50^{x+1}h=2^{x+4}
Swap sides so that all variable terms are on the left hand side.
\frac{50^{x+1}h}{50^{x+1}}=\frac{2^{x+4}}{50^{x+1}}
Divide both sides by 50^{x+1}.
h=\frac{2^{x+4}}{50^{x+1}}
Dividing by 50^{x+1} undoes the multiplication by 50^{x+1}.
h=\frac{8\times 2^{x}}{25\times 50^{x}}
Divide 2^{4+x} by 50^{x+1}.
50^{x+1}h=2^{x+4}
Swap sides so that all variable terms are on the left hand side.
\frac{50^{x+1}h}{50^{x+1}}=\frac{2^{x+4}}{50^{x+1}}
Divide both sides by 50^{x+1}.
h=\frac{2^{x+4}}{50^{x+1}}
Dividing by 50^{x+1} undoes the multiplication by 50^{x+1}.
h=\frac{8\times 2^{x}}{25\times 50^{x}}
Divide 2^{4+x} by 50^{x+1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}