Solve for b (complex solution)
\left\{\begin{matrix}b=2^{m+1}a^{m+n-8}\text{, }&a\neq 0\\b\in \mathrm{C}\text{, }&m\neq -n\text{ and }a=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=2^{m+1}a^{m+n-8}\text{, }&a>0\text{ or }\left(Denominator(m+n)\text{bmod}2=1\text{ and }a<0\right)\\b\in \mathrm{R}\text{, }&a=0\text{ and }m>-n\end{matrix}\right.
Share
Copied to clipboard
a^{8}b=2^{m+1}a^{m+n}
Swap sides so that all variable terms are on the left hand side.
\frac{a^{8}b}{a^{8}}=\frac{2^{m+1}a^{m+n}}{a^{8}}
Divide both sides by a^{8}.
b=\frac{2^{m+1}a^{m+n}}{a^{8}}
Dividing by a^{8} undoes the multiplication by a^{8}.
b=2^{m+1}a^{m+n-8}
Divide a^{m+n}\times 2^{1+m} by a^{8}.
a^{8}b=2^{m+1}a^{m+n}
Swap sides so that all variable terms are on the left hand side.
\frac{a^{8}b}{a^{8}}=\frac{2^{m+1}a^{m+n}}{a^{8}}
Divide both sides by a^{8}.
b=\frac{2^{m+1}a^{m+n}}{a^{8}}
Dividing by a^{8} undoes the multiplication by a^{8}.
b=2^{m+1}a^{m+n-8}
Divide a^{m+n}\times 2^{1+m} by a^{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}