Solve for P
P=-\frac{2^{a^{2}}}{5}+6a
Share
Copied to clipboard
-30a+5P=-2^{a^{2}}
Subtract 2^{a^{2}} from both sides. Anything subtracted from zero gives its negation.
5P=-2^{a^{2}}+30a
Add 30a to both sides.
5P=30a-2^{a^{2}}
The equation is in standard form.
\frac{5P}{5}=\frac{30a-2^{a^{2}}}{5}
Divide both sides by 5.
P=\frac{30a-2^{a^{2}}}{5}
Dividing by 5 undoes the multiplication by 5.
P=-\frac{2^{a^{2}}}{5}+6a
Divide -2^{a^{2}}+30a by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}