Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

2^{5}+\left(3a\right)^{3}-\left(b+16\right)\left(5-2a\right)+2^{5}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract -1 from 4 to get 5.
32+\left(3a\right)^{3}-\left(b+16\right)\left(5-2a\right)+2^{5}
Calculate 2 to the power of 5 and get 32.
32+3^{3}a^{3}-\left(b+16\right)\left(5-2a\right)+2^{5}
Expand \left(3a\right)^{3}.
32+27a^{3}-\left(b+16\right)\left(5-2a\right)+2^{5}
Calculate 3 to the power of 3 and get 27.
32+27a^{3}-\left(b+16\right)\left(5-2a\right)+32
Calculate 2 to the power of 5 and get 32.
32+27a^{3}-\left(5b-2ba+80-32a\right)+32
Use the distributive property to multiply b+16 by 5-2a.
32+27a^{3}-5b+2ba-80+32a+32
To find the opposite of 5b-2ba+80-32a, find the opposite of each term.
-48+27a^{3}-5b+2ba+32a+32
Subtract 80 from 32 to get -48.
-16+27a^{3}-5b+2ba+32a
Add -48 and 32 to get -16.
2^{5}+\left(3a\right)^{3}-\left(b+16\right)\left(5-2a\right)+2^{5}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract -1 from 4 to get 5.
32+\left(3a\right)^{3}-\left(b+16\right)\left(5-2a\right)+2^{5}
Calculate 2 to the power of 5 and get 32.
32+3^{3}a^{3}-\left(b+16\right)\left(5-2a\right)+2^{5}
Expand \left(3a\right)^{3}.
32+27a^{3}-\left(b+16\right)\left(5-2a\right)+2^{5}
Calculate 3 to the power of 3 and get 27.
32+27a^{3}-\left(b+16\right)\left(5-2a\right)+32
Calculate 2 to the power of 5 and get 32.
32+27a^{3}-\left(5b-2ba+80-32a\right)+32
Use the distributive property to multiply b+16 by 5-2a.
32+27a^{3}-5b+2ba-80+32a+32
To find the opposite of 5b-2ba+80-32a, find the opposite of each term.
-48+27a^{3}-5b+2ba+32a+32
Subtract 80 from 32 to get -48.
-16+27a^{3}-5b+2ba+32a
Add -48 and 32 to get -16.