Solve for m
m=\frac{2\times 4^{x}+6\times 2^{x}+7}{2\left(2^{x+1}+1\right)}
Solve for x
\left\{\begin{matrix}x=\log_{2}\left(\frac{\sqrt{4m^{2}-8m-5}}{2}+m-\frac{3}{2}\right)\text{, }&m\geq \frac{5}{2}\\x=\log_{2}\left(-\frac{\sqrt{4m^{2}-8m-5}}{2}+m-\frac{3}{2}\right)\text{, }&m\geq \frac{5}{2}\text{ and }m<\frac{7}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
2^{2x+1}-\left(2m\times 2^{x+1}-3\times 2^{x+1}\right)+7-2m=0
Use the distributive property to multiply 2m-3 by 2^{x+1}.
2^{2x+1}-2m\times 2^{x+1}+3\times 2^{x+1}+7-2m=0
To find the opposite of 2m\times 2^{x+1}-3\times 2^{x+1}, find the opposite of each term.
-2m\times 2^{x+1}+3\times 2^{x+1}+7-2m=-2^{2x+1}
Subtract 2^{2x+1} from both sides. Anything subtracted from zero gives its negation.
-2m\times 2^{x+1}+7-2m=-2^{2x+1}-3\times 2^{x+1}
Subtract 3\times 2^{x+1} from both sides.
-2m\times 2^{x+1}-2m=-2^{2x+1}-3\times 2^{x+1}-7
Subtract 7 from both sides.
\left(-2\times 2^{x+1}-2\right)m=-2^{2x+1}-3\times 2^{x+1}-7
Combine all terms containing m.
\left(-2\times 2^{x+1}-2\right)m=-3\times 2^{x+1}-2^{2x+1}-7
The equation is in standard form.
\frac{\left(-2\times 2^{x+1}-2\right)m}{-2\times 2^{x+1}-2}=\frac{-2\times 4^{x}-6\times 2^{x}-7}{-2\times 2^{x+1}-2}
Divide both sides by -2\times 2^{x+1}-2.
m=\frac{-2\times 4^{x}-6\times 2^{x}-7}{-2\times 2^{x+1}-2}
Dividing by -2\times 2^{x+1}-2 undoes the multiplication by -2\times 2^{x+1}-2.
m=\frac{2\times 4^{x}+6\times 2^{x}+7}{2\left(2\times 2^{x}+1\right)}
Divide -2\times 4^{x}-6\times 2^{x}-7 by -2\times 2^{x+1}-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}