Solve for a
a=\frac{4^{x}+4}{\cos(\pi x)\times 2^{x}}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=n_{1}+\frac{1}{2}
Graph
Share
Copied to clipboard
a\cos(\pi x)=2^{2-x}+2^{x}
Swap sides so that all variable terms are on the left hand side.
\cos(\pi x)a=2^{-x+2}+2^{x}
The equation is in standard form.
\frac{\cos(\pi x)a}{\cos(\pi x)}=\frac{2^{-x+2}+2^{x}}{\cos(\pi x)}
Divide both sides by \cos(\pi x).
a=\frac{2^{-x+2}+2^{x}}{\cos(\pi x)}
Dividing by \cos(\pi x) undoes the multiplication by \cos(\pi x).
a=\frac{4^{x}+4}{\cos(\pi x)\times 2^{x}}
Divide 2^{x}+2^{-x+2} by \cos(\pi x).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}