Evaluate
\frac{281}{6}\approx 46.833333333
Factor
\frac{281}{2 \cdot 3} = 46\frac{5}{6} = 46.833333333333336
Share
Copied to clipboard
4\left(3+4\right)-1^{2}\left(\frac{1}{2}+\frac{2}{3}\right)+20
Calculate 2 to the power of 2 and get 4.
4\times 7-1^{2}\left(\frac{1}{2}+\frac{2}{3}\right)+20
Add 3 and 4 to get 7.
28-1^{2}\left(\frac{1}{2}+\frac{2}{3}\right)+20
Multiply 4 and 7 to get 28.
28-1\left(\frac{1}{2}+\frac{2}{3}\right)+20
Calculate 1 to the power of 2 and get 1.
28-1\left(\frac{3}{6}+\frac{4}{6}\right)+20
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{2}{3} to fractions with denominator 6.
28-1\times \frac{3+4}{6}+20
Since \frac{3}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
28-1\times \frac{7}{6}+20
Add 3 and 4 to get 7.
28-\frac{7}{6}+20
Multiply 1 and \frac{7}{6} to get \frac{7}{6}.
\frac{168}{6}-\frac{7}{6}+20
Convert 28 to fraction \frac{168}{6}.
\frac{168-7}{6}+20
Since \frac{168}{6} and \frac{7}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{161}{6}+20
Subtract 7 from 168 to get 161.
\frac{161}{6}+\frac{120}{6}
Convert 20 to fraction \frac{120}{6}.
\frac{161+120}{6}
Since \frac{161}{6} and \frac{120}{6} have the same denominator, add them by adding their numerators.
\frac{281}{6}
Add 161 and 120 to get 281.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}