Solve for x
x=-\frac{47}{52}\approx -0.903846154
Graph
Share
Copied to clipboard
2\left(4x+5\right)\left(1-4x\right)^{-1}\left(1+x\right)\times 2^{2}+\left(4x+5\right)\times 2=3
Variable x cannot be equal to -\frac{5}{4} since division by zero is not defined. Multiply both sides of the equation by 4x+5.
\left(8x+10\right)\left(1-4x\right)^{-1}\left(1+x\right)\times 2^{2}+\left(4x+5\right)\times 2=3
Use the distributive property to multiply 2 by 4x+5.
\left(8x\left(1-4x\right)^{-1}+10\left(1-4x\right)^{-1}\right)\left(1+x\right)\times 2^{2}+\left(4x+5\right)\times 2=3
Use the distributive property to multiply 8x+10 by \left(1-4x\right)^{-1}.
\left(18x\left(1-4x\right)^{-1}+8\left(1-4x\right)^{-1}x^{2}+10\left(1-4x\right)^{-1}\right)\times 2^{2}+\left(4x+5\right)\times 2=3
Use the distributive property to multiply 8x\left(1-4x\right)^{-1}+10\left(1-4x\right)^{-1} by 1+x and combine like terms.
\left(18x\left(1-4x\right)^{-1}+8\left(1-4x\right)^{-1}x^{2}+10\left(1-4x\right)^{-1}\right)\times 4+\left(4x+5\right)\times 2=3
Calculate 2 to the power of 2 and get 4.
72\left(1-4x\right)^{-1}x+32\left(1-4x\right)^{-1}x^{2}+40\left(1-4x\right)^{-1}+\left(4x+5\right)\times 2=3
Use the distributive property to multiply 18x\left(1-4x\right)^{-1}+8\left(1-4x\right)^{-1}x^{2}+10\left(1-4x\right)^{-1} by 4.
72\left(1-4x\right)^{-1}x+32\left(1-4x\right)^{-1}x^{2}+40\left(1-4x\right)^{-1}+8x+10=3
Use the distributive property to multiply 4x+5 by 2.
72\left(1-4x\right)^{-1}x+32\left(1-4x\right)^{-1}x^{2}+40\left(1-4x\right)^{-1}+8x=3-10
Subtract 10 from both sides.
72\left(1-4x\right)^{-1}x+32\left(1-4x\right)^{-1}x^{2}+40\left(1-4x\right)^{-1}+8x=-7
Subtract 10 from 3 to get -7.
32\times \frac{1}{-4x+1}x^{2}+8x+72\times \frac{1}{-4x+1}x+40\times \frac{1}{-4x+1}=-7
Reorder the terms.
32\times 1x^{2}+8x\left(-4x+1\right)+72\times 1x+40\times 1=-7\left(-4x+1\right)
Variable x cannot be equal to \frac{1}{4} since division by zero is not defined. Multiply both sides of the equation by -4x+1.
32x^{2}+8x\left(-4x+1\right)+72x+40=-7\left(-4x+1\right)
Do the multiplications.
32x^{2}-32x^{2}+8x+72x+40=-7\left(-4x+1\right)
Use the distributive property to multiply 8x by -4x+1.
8x+72x+40=-7\left(-4x+1\right)
Combine 32x^{2} and -32x^{2} to get 0.
80x+40=-7\left(-4x+1\right)
Combine 8x and 72x to get 80x.
80x+40=28x-7
Use the distributive property to multiply -7 by -4x+1.
80x+40-28x=-7
Subtract 28x from both sides.
52x+40=-7
Combine 80x and -28x to get 52x.
52x=-7-40
Subtract 40 from both sides.
52x=-47
Subtract 40 from -7 to get -47.
x=\frac{-47}{52}
Divide both sides by 52.
x=-\frac{47}{52}
Fraction \frac{-47}{52} can be rewritten as -\frac{47}{52} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}