Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4+9x^{2}=12
Calculate 2 to the power of 2 and get 4.
9x^{2}=12-4
Subtract 4 from both sides.
9x^{2}=8
Subtract 4 from 12 to get 8.
x^{2}=\frac{8}{9}
Divide both sides by 9.
x=\frac{2\sqrt{2}}{3} x=-\frac{2\sqrt{2}}{3}
Take the square root of both sides of the equation.
4+9x^{2}=12
Calculate 2 to the power of 2 and get 4.
4+9x^{2}-12=0
Subtract 12 from both sides.
-8+9x^{2}=0
Subtract 12 from 4 to get -8.
9x^{2}-8=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 9\left(-8\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\left(-8\right)}}{2\times 9}
Square 0.
x=\frac{0±\sqrt{-36\left(-8\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{0±\sqrt{288}}{2\times 9}
Multiply -36 times -8.
x=\frac{0±12\sqrt{2}}{2\times 9}
Take the square root of 288.
x=\frac{0±12\sqrt{2}}{18}
Multiply 2 times 9.
x=\frac{2\sqrt{2}}{3}
Now solve the equation x=\frac{0±12\sqrt{2}}{18} when ± is plus.
x=-\frac{2\sqrt{2}}{3}
Now solve the equation x=\frac{0±12\sqrt{2}}{18} when ± is minus.
x=\frac{2\sqrt{2}}{3} x=-\frac{2\sqrt{2}}{3}
The equation is now solved.