Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4+4^{2}+6^{2}+8^{2}+x^{2}=5\left(4+\frac{x}{5}\right)^{2}+5\times 4
Calculate 2 to the power of 2 and get 4.
4+16+6^{2}+8^{2}+x^{2}=5\left(4+\frac{x}{5}\right)^{2}+5\times 4
Calculate 4 to the power of 2 and get 16.
20+6^{2}+8^{2}+x^{2}=5\left(4+\frac{x}{5}\right)^{2}+5\times 4
Add 4 and 16 to get 20.
20+36+8^{2}+x^{2}=5\left(4+\frac{x}{5}\right)^{2}+5\times 4
Calculate 6 to the power of 2 and get 36.
56+8^{2}+x^{2}=5\left(4+\frac{x}{5}\right)^{2}+5\times 4
Add 20 and 36 to get 56.
56+64+x^{2}=5\left(4+\frac{x}{5}\right)^{2}+5\times 4
Calculate 8 to the power of 2 and get 64.
120+x^{2}=5\left(4+\frac{x}{5}\right)^{2}+5\times 4
Add 56 and 64 to get 120.
120+x^{2}=5\left(16+8\times \frac{x}{5}+\left(\frac{x}{5}\right)^{2}\right)+5\times 4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+\frac{x}{5}\right)^{2}.
120+x^{2}=5\left(16+\frac{8x}{5}+\left(\frac{x}{5}\right)^{2}\right)+5\times 4
Express 8\times \frac{x}{5} as a single fraction.
120+x^{2}=5\left(16+\frac{8x}{5}+\frac{x^{2}}{5^{2}}\right)+5\times 4
To raise \frac{x}{5} to a power, raise both numerator and denominator to the power and then divide.
120+x^{2}=5\left(\frac{16\times 5^{2}}{5^{2}}+\frac{8x}{5}+\frac{x^{2}}{5^{2}}\right)+5\times 4
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{5^{2}}{5^{2}}.
120+x^{2}=5\left(\frac{16\times 5^{2}+x^{2}}{5^{2}}+\frac{8x}{5}\right)+5\times 4
Since \frac{16\times 5^{2}}{5^{2}} and \frac{x^{2}}{5^{2}} have the same denominator, add them by adding their numerators.
120+x^{2}=5\left(\frac{400+x^{2}}{5^{2}}+\frac{8x}{5}\right)+5\times 4
Do the multiplications in 16\times 5^{2}+x^{2}.
120+x^{2}=5\left(\frac{400+x^{2}}{25}+\frac{5\times 8x}{25}\right)+5\times 4
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5^{2} and 5 is 25. Multiply \frac{8x}{5} times \frac{5}{5}.
120+x^{2}=5\times \frac{400+x^{2}+5\times 8x}{25}+5\times 4
Since \frac{400+x^{2}}{25} and \frac{5\times 8x}{25} have the same denominator, add them by adding their numerators.
120+x^{2}=5\times \frac{400+x^{2}+40x}{25}+5\times 4
Do the multiplications in 400+x^{2}+5\times 8x.
120+x^{2}=\frac{400+x^{2}+40x}{5}+5\times 4
Cancel out 25, the greatest common factor in 5 and 25.
120+x^{2}=\frac{400+x^{2}+40x}{5}+20
Multiply 5 and 4 to get 20.
120+x^{2}=80+\frac{1}{5}x^{2}+8x+20
Divide each term of 400+x^{2}+40x by 5 to get 80+\frac{1}{5}x^{2}+8x.
120+x^{2}=100+\frac{1}{5}x^{2}+8x
Add 80 and 20 to get 100.
120+x^{2}-100=\frac{1}{5}x^{2}+8x
Subtract 100 from both sides.
20+x^{2}=\frac{1}{5}x^{2}+8x
Subtract 100 from 120 to get 20.
20+x^{2}-\frac{1}{5}x^{2}=8x
Subtract \frac{1}{5}x^{2} from both sides.
20+\frac{4}{5}x^{2}=8x
Combine x^{2} and -\frac{1}{5}x^{2} to get \frac{4}{5}x^{2}.
20+\frac{4}{5}x^{2}-8x=0
Subtract 8x from both sides.
\frac{4}{5}x^{2}-8x+20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times \frac{4}{5}\times 20}}{2\times \frac{4}{5}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{4}{5} for a, -8 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times \frac{4}{5}\times 20}}{2\times \frac{4}{5}}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-\frac{16}{5}\times 20}}{2\times \frac{4}{5}}
Multiply -4 times \frac{4}{5}.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2\times \frac{4}{5}}
Multiply -\frac{16}{5} times 20.
x=\frac{-\left(-8\right)±\sqrt{0}}{2\times \frac{4}{5}}
Add 64 to -64.
x=-\frac{-8}{2\times \frac{4}{5}}
Take the square root of 0.
x=\frac{8}{2\times \frac{4}{5}}
The opposite of -8 is 8.
x=\frac{8}{\frac{8}{5}}
Multiply 2 times \frac{4}{5}.
x=5
Divide 8 by \frac{8}{5} by multiplying 8 by the reciprocal of \frac{8}{5}.
4+4^{2}+6^{2}+8^{2}+x^{2}=5\left(4+\frac{x}{5}\right)^{2}+5\times 4
Calculate 2 to the power of 2 and get 4.
4+16+6^{2}+8^{2}+x^{2}=5\left(4+\frac{x}{5}\right)^{2}+5\times 4
Calculate 4 to the power of 2 and get 16.
20+6^{2}+8^{2}+x^{2}=5\left(4+\frac{x}{5}\right)^{2}+5\times 4
Add 4 and 16 to get 20.
20+36+8^{2}+x^{2}=5\left(4+\frac{x}{5}\right)^{2}+5\times 4
Calculate 6 to the power of 2 and get 36.
56+8^{2}+x^{2}=5\left(4+\frac{x}{5}\right)^{2}+5\times 4
Add 20 and 36 to get 56.
56+64+x^{2}=5\left(4+\frac{x}{5}\right)^{2}+5\times 4
Calculate 8 to the power of 2 and get 64.
120+x^{2}=5\left(4+\frac{x}{5}\right)^{2}+5\times 4
Add 56 and 64 to get 120.
120+x^{2}=5\left(16+8\times \frac{x}{5}+\left(\frac{x}{5}\right)^{2}\right)+5\times 4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+\frac{x}{5}\right)^{2}.
120+x^{2}=5\left(16+\frac{8x}{5}+\left(\frac{x}{5}\right)^{2}\right)+5\times 4
Express 8\times \frac{x}{5} as a single fraction.
120+x^{2}=5\left(16+\frac{8x}{5}+\frac{x^{2}}{5^{2}}\right)+5\times 4
To raise \frac{x}{5} to a power, raise both numerator and denominator to the power and then divide.
120+x^{2}=5\left(\frac{16\times 5^{2}}{5^{2}}+\frac{8x}{5}+\frac{x^{2}}{5^{2}}\right)+5\times 4
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{5^{2}}{5^{2}}.
120+x^{2}=5\left(\frac{16\times 5^{2}+x^{2}}{5^{2}}+\frac{8x}{5}\right)+5\times 4
Since \frac{16\times 5^{2}}{5^{2}} and \frac{x^{2}}{5^{2}} have the same denominator, add them by adding their numerators.
120+x^{2}=5\left(\frac{400+x^{2}}{5^{2}}+\frac{8x}{5}\right)+5\times 4
Do the multiplications in 16\times 5^{2}+x^{2}.
120+x^{2}=5\left(\frac{400+x^{2}}{25}+\frac{5\times 8x}{25}\right)+5\times 4
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5^{2} and 5 is 25. Multiply \frac{8x}{5} times \frac{5}{5}.
120+x^{2}=5\times \frac{400+x^{2}+5\times 8x}{25}+5\times 4
Since \frac{400+x^{2}}{25} and \frac{5\times 8x}{25} have the same denominator, add them by adding their numerators.
120+x^{2}=5\times \frac{400+x^{2}+40x}{25}+5\times 4
Do the multiplications in 400+x^{2}+5\times 8x.
120+x^{2}=\frac{400+x^{2}+40x}{5}+5\times 4
Cancel out 25, the greatest common factor in 5 and 25.
120+x^{2}=\frac{400+x^{2}+40x}{5}+20
Multiply 5 and 4 to get 20.
120+x^{2}=80+\frac{1}{5}x^{2}+8x+20
Divide each term of 400+x^{2}+40x by 5 to get 80+\frac{1}{5}x^{2}+8x.
120+x^{2}=100+\frac{1}{5}x^{2}+8x
Add 80 and 20 to get 100.
120+x^{2}-\frac{1}{5}x^{2}=100+8x
Subtract \frac{1}{5}x^{2} from both sides.
120+\frac{4}{5}x^{2}=100+8x
Combine x^{2} and -\frac{1}{5}x^{2} to get \frac{4}{5}x^{2}.
120+\frac{4}{5}x^{2}-8x=100
Subtract 8x from both sides.
\frac{4}{5}x^{2}-8x=100-120
Subtract 120 from both sides.
\frac{4}{5}x^{2}-8x=-20
Subtract 120 from 100 to get -20.
\frac{\frac{4}{5}x^{2}-8x}{\frac{4}{5}}=-\frac{20}{\frac{4}{5}}
Divide both sides of the equation by \frac{4}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{8}{\frac{4}{5}}\right)x=-\frac{20}{\frac{4}{5}}
Dividing by \frac{4}{5} undoes the multiplication by \frac{4}{5}.
x^{2}-10x=-\frac{20}{\frac{4}{5}}
Divide -8 by \frac{4}{5} by multiplying -8 by the reciprocal of \frac{4}{5}.
x^{2}-10x=-25
Divide -20 by \frac{4}{5} by multiplying -20 by the reciprocal of \frac{4}{5}.
x^{2}-10x+\left(-5\right)^{2}=-25+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-25+25
Square -5.
x^{2}-10x+25=0
Add -25 to 25.
\left(x-5\right)^{2}=0
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-5=0 x-5=0
Simplify.
x=5 x=5
Add 5 to both sides of the equation.
x=5
The equation is now solved. Solutions are the same.