Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

4+\left(2\sqrt{2}\right)^{2}=k^{2}
Calculate 2 to the power of 2 and get 4.
4+2^{2}\left(\sqrt{2}\right)^{2}=k^{2}
Expand \left(2\sqrt{2}\right)^{2}.
4+4\left(\sqrt{2}\right)^{2}=k^{2}
Calculate 2 to the power of 2 and get 4.
4+4\times 2=k^{2}
The square of \sqrt{2} is 2.
4+8=k^{2}
Multiply 4 and 2 to get 8.
12=k^{2}
Add 4 and 8 to get 12.
k^{2}=12
Swap sides so that all variable terms are on the left hand side.
k=2\sqrt{3} k=-2\sqrt{3}
Take the square root of both sides of the equation.
4+\left(2\sqrt{2}\right)^{2}=k^{2}
Calculate 2 to the power of 2 and get 4.
4+2^{2}\left(\sqrt{2}\right)^{2}=k^{2}
Expand \left(2\sqrt{2}\right)^{2}.
4+4\left(\sqrt{2}\right)^{2}=k^{2}
Calculate 2 to the power of 2 and get 4.
4+4\times 2=k^{2}
The square of \sqrt{2} is 2.
4+8=k^{2}
Multiply 4 and 2 to get 8.
12=k^{2}
Add 4 and 8 to get 12.
k^{2}=12
Swap sides so that all variable terms are on the left hand side.
k^{2}-12=0
Subtract 12 from both sides.
k=\frac{0±\sqrt{0^{2}-4\left(-12\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\left(-12\right)}}{2}
Square 0.
k=\frac{0±\sqrt{48}}{2}
Multiply -4 times -12.
k=\frac{0±4\sqrt{3}}{2}
Take the square root of 48.
k=2\sqrt{3}
Now solve the equation k=\frac{0±4\sqrt{3}}{2} when ± is plus.
k=-2\sqrt{3}
Now solve the equation k=\frac{0±4\sqrt{3}}{2} when ± is minus.
k=2\sqrt{3} k=-2\sqrt{3}
The equation is now solved.