Solve for k
k=2\sqrt{3}\approx 3.464101615
k=-2\sqrt{3}\approx -3.464101615
Share
Copied to clipboard
4+\left(2\sqrt{2}\right)^{2}=k^{2}
Calculate 2 to the power of 2 and get 4.
4+2^{2}\left(\sqrt{2}\right)^{2}=k^{2}
Expand \left(2\sqrt{2}\right)^{2}.
4+4\left(\sqrt{2}\right)^{2}=k^{2}
Calculate 2 to the power of 2 and get 4.
4+4\times 2=k^{2}
The square of \sqrt{2} is 2.
4+8=k^{2}
Multiply 4 and 2 to get 8.
12=k^{2}
Add 4 and 8 to get 12.
k^{2}=12
Swap sides so that all variable terms are on the left hand side.
k=2\sqrt{3} k=-2\sqrt{3}
Take the square root of both sides of the equation.
4+\left(2\sqrt{2}\right)^{2}=k^{2}
Calculate 2 to the power of 2 and get 4.
4+2^{2}\left(\sqrt{2}\right)^{2}=k^{2}
Expand \left(2\sqrt{2}\right)^{2}.
4+4\left(\sqrt{2}\right)^{2}=k^{2}
Calculate 2 to the power of 2 and get 4.
4+4\times 2=k^{2}
The square of \sqrt{2} is 2.
4+8=k^{2}
Multiply 4 and 2 to get 8.
12=k^{2}
Add 4 and 8 to get 12.
k^{2}=12
Swap sides so that all variable terms are on the left hand side.
k^{2}-12=0
Subtract 12 from both sides.
k=\frac{0±\sqrt{0^{2}-4\left(-12\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\left(-12\right)}}{2}
Square 0.
k=\frac{0±\sqrt{48}}{2}
Multiply -4 times -12.
k=\frac{0±4\sqrt{3}}{2}
Take the square root of 48.
k=2\sqrt{3}
Now solve the equation k=\frac{0±4\sqrt{3}}{2} when ± is plus.
k=-2\sqrt{3}
Now solve the equation k=\frac{0±4\sqrt{3}}{2} when ± is minus.
k=2\sqrt{3} k=-2\sqrt{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}