Solve for t
t=\frac{x}{4}-\frac{7}{8}
x\neq -\frac{1}{2}
Solve for x
x=4t+\frac{7}{2}
t\neq -1
Graph
Share
Copied to clipboard
\left(t+1\right)\times 2^{2+1}=2x+1
Variable t cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by t+1.
\left(t+1\right)\times 2^{3}=2x+1
Add 2 and 1 to get 3.
\left(t+1\right)\times 8=2x+1
Calculate 2 to the power of 3 and get 8.
8t+8=2x+1
Use the distributive property to multiply t+1 by 8.
8t=2x+1-8
Subtract 8 from both sides.
8t=2x-7
Subtract 8 from 1 to get -7.
\frac{8t}{8}=\frac{2x-7}{8}
Divide both sides by 8.
t=\frac{2x-7}{8}
Dividing by 8 undoes the multiplication by 8.
t=\frac{x}{4}-\frac{7}{8}
Divide 2x-7 by 8.
t=\frac{x}{4}-\frac{7}{8}\text{, }t\neq -1
Variable t cannot be equal to -1.
\left(t+1\right)\times 2^{2+1}=2x+1
Multiply both sides of the equation by t+1.
\left(t+1\right)\times 2^{3}=2x+1
Add 2 and 1 to get 3.
\left(t+1\right)\times 8=2x+1
Calculate 2 to the power of 3 and get 8.
8t+8=2x+1
Use the distributive property to multiply t+1 by 8.
2x+1=8t+8
Swap sides so that all variable terms are on the left hand side.
2x=8t+8-1
Subtract 1 from both sides.
2x=8t+7
Subtract 1 from 8 to get 7.
\frac{2x}{2}=\frac{8t+7}{2}
Divide both sides by 2.
x=\frac{8t+7}{2}
Dividing by 2 undoes the multiplication by 2.
x=4t+\frac{7}{2}
Divide 8t+7 by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}