2 ^ { 1,5 x - 3 } = 64
Solve for x
x=6
Graph
Share
Copied to clipboard
2^{1,5x-3}=64
Use the rules of exponents and logarithms to solve the equation.
\log(2^{1,5x-3})=\log(64)
Take the logarithm of both sides of the equation.
\left(1,5x-3\right)\log(2)=\log(64)
The logarithm of a number raised to a power is the power times the logarithm of the number.
1,5x-3=\frac{\log(64)}{\log(2)}
Divide both sides by \log(2).
1,5x-3=\log_{2}\left(64\right)
By the change-of-base formula log(a)/log(b)=log(b,a).
1,5x=6-\left(-3\right)
Add 3 to both sides of the equation.
x=\frac{9}{1,5}
Divide both sides of the equation by 1,5, which is the same as multiplying both sides by the reciprocal of the fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}