Solve for m
m=\frac{\sqrt{105}+1}{104}\approx 0.108143757
m=\frac{1-\sqrt{105}}{104}\approx -0.088912988
Share
Copied to clipboard
2\times 52m^{2}-2m-1=0
Calculate 2 to the power of 1 and get 2.
104m^{2}-2m-1=0
Multiply 2 and 52 to get 104.
m=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 104\left(-1\right)}}{2\times 104}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 104 for a, -2 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-2\right)±\sqrt{4-4\times 104\left(-1\right)}}{2\times 104}
Square -2.
m=\frac{-\left(-2\right)±\sqrt{4-416\left(-1\right)}}{2\times 104}
Multiply -4 times 104.
m=\frac{-\left(-2\right)±\sqrt{4+416}}{2\times 104}
Multiply -416 times -1.
m=\frac{-\left(-2\right)±\sqrt{420}}{2\times 104}
Add 4 to 416.
m=\frac{-\left(-2\right)±2\sqrt{105}}{2\times 104}
Take the square root of 420.
m=\frac{2±2\sqrt{105}}{2\times 104}
The opposite of -2 is 2.
m=\frac{2±2\sqrt{105}}{208}
Multiply 2 times 104.
m=\frac{2\sqrt{105}+2}{208}
Now solve the equation m=\frac{2±2\sqrt{105}}{208} when ± is plus. Add 2 to 2\sqrt{105}.
m=\frac{\sqrt{105}+1}{104}
Divide 2+2\sqrt{105} by 208.
m=\frac{2-2\sqrt{105}}{208}
Now solve the equation m=\frac{2±2\sqrt{105}}{208} when ± is minus. Subtract 2\sqrt{105} from 2.
m=\frac{1-\sqrt{105}}{104}
Divide 2-2\sqrt{105} by 208.
m=\frac{\sqrt{105}+1}{104} m=\frac{1-\sqrt{105}}{104}
The equation is now solved.
2\times 52m^{2}-2m-1=0
Calculate 2 to the power of 1 and get 2.
104m^{2}-2m-1=0
Multiply 2 and 52 to get 104.
104m^{2}-2m=1
Add 1 to both sides. Anything plus zero gives itself.
\frac{104m^{2}-2m}{104}=\frac{1}{104}
Divide both sides by 104.
m^{2}+\left(-\frac{2}{104}\right)m=\frac{1}{104}
Dividing by 104 undoes the multiplication by 104.
m^{2}-\frac{1}{52}m=\frac{1}{104}
Reduce the fraction \frac{-2}{104} to lowest terms by extracting and canceling out 2.
m^{2}-\frac{1}{52}m+\left(-\frac{1}{104}\right)^{2}=\frac{1}{104}+\left(-\frac{1}{104}\right)^{2}
Divide -\frac{1}{52}, the coefficient of the x term, by 2 to get -\frac{1}{104}. Then add the square of -\frac{1}{104} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{1}{52}m+\frac{1}{10816}=\frac{1}{104}+\frac{1}{10816}
Square -\frac{1}{104} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{1}{52}m+\frac{1}{10816}=\frac{105}{10816}
Add \frac{1}{104} to \frac{1}{10816} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m-\frac{1}{104}\right)^{2}=\frac{105}{10816}
Factor m^{2}-\frac{1}{52}m+\frac{1}{10816}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{1}{104}\right)^{2}}=\sqrt{\frac{105}{10816}}
Take the square root of both sides of the equation.
m-\frac{1}{104}=\frac{\sqrt{105}}{104} m-\frac{1}{104}=-\frac{\sqrt{105}}{104}
Simplify.
m=\frac{\sqrt{105}+1}{104} m=\frac{1-\sqrt{105}}{104}
Add \frac{1}{104} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}