Solve for b
b=\frac{1}{2}=0.5
Share
Copied to clipboard
2^{-b+\frac{5}{2}}=4
Use the rules of exponents and logarithms to solve the equation.
\log(2^{-b+\frac{5}{2}})=\log(4)
Take the logarithm of both sides of the equation.
\left(-b+\frac{5}{2}\right)\log(2)=\log(4)
The logarithm of a number raised to a power is the power times the logarithm of the number.
-b+\frac{5}{2}=\frac{\log(4)}{\log(2)}
Divide both sides by \log(2).
-b+\frac{5}{2}=\log_{2}\left(4\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
-b=2-\frac{5}{2}
Subtract \frac{5}{2} from both sides of the equation.
b=-\frac{\frac{1}{2}}{-1}
Divide both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}