Solve for k
k = -\frac{15}{2 ^ {\frac{\pi}{2}} - 2} \approx -15.452982174
Share
Copied to clipboard
2^{\frac{\pi }{2}}k+59=2^{4}-3\times 3^{2}+k\times 2+18\times 3+1
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
2^{\frac{\pi }{2}}k+59=2^{4}-3^{3}+k\times 2+18\times 3+1
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
2^{\frac{\pi }{2}}k+59=16-3^{3}+k\times 2+18\times 3+1
Calculate 2 to the power of 4 and get 16.
2^{\frac{\pi }{2}}k+59=16-27+k\times 2+18\times 3+1
Calculate 3 to the power of 3 and get 27.
2^{\frac{\pi }{2}}k+59=-11+k\times 2+18\times 3+1
Subtract 27 from 16 to get -11.
2^{\frac{\pi }{2}}k+59=-11+k\times 2+54+1
Multiply 18 and 3 to get 54.
2^{\frac{\pi }{2}}k+59=43+k\times 2+1
Add -11 and 54 to get 43.
2^{\frac{\pi }{2}}k+59=44+k\times 2
Add 43 and 1 to get 44.
2^{\frac{\pi }{2}}k+59-k\times 2=44
Subtract k\times 2 from both sides.
2^{\frac{\pi }{2}}k+59-2k=44
Multiply -1 and 2 to get -2.
2^{\frac{\pi }{2}}k-2k=44-59
Subtract 59 from both sides.
2^{\frac{\pi }{2}}k-2k=-15
Subtract 59 from 44 to get -15.
\left(2^{\frac{\pi }{2}}-2\right)k=-15
Combine all terms containing k.
\frac{\left(2^{\frac{\pi }{2}}-2\right)k}{2^{\frac{\pi }{2}}-2}=-\frac{15}{2^{\frac{\pi }{2}}-2}
Divide both sides by 2^{\frac{1}{2}\pi }-2.
k=-\frac{15}{2^{\frac{\pi }{2}}-2}
Dividing by 2^{\frac{1}{2}\pi }-2 undoes the multiplication by 2^{\frac{1}{2}\pi }-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}