Solve for x
x = \frac{40}{29} = 1\frac{11}{29} \approx 1.379310345
Graph
Share
Copied to clipboard
12\left(1-\frac{1}{3}\left(x-\frac{1+x}{3}\right)\right)=3\left(2x-\frac{10-3x}{3}\right)\times 8\times \frac{1}{2}
Multiply both sides of the equation by 6, the least common multiple of 3,2.
12\left(1-\frac{1}{3}\left(x-\frac{1+x}{3}\right)\right)=24\left(2x-\frac{10-3x}{3}\right)\times \frac{1}{2}
Multiply 3 and 8 to get 24.
12\left(1-\frac{1}{3}\left(x-\frac{1+x}{3}\right)\right)=\frac{24}{2}\left(2x-\frac{10-3x}{3}\right)
Multiply 24 and \frac{1}{2} to get \frac{24}{2}.
12\left(1-\frac{1}{3}\left(x-\frac{1+x}{3}\right)\right)=12\left(2x-\frac{10-3x}{3}\right)
Divide 24 by 2 to get 12.
12\left(1-\frac{1}{3}\left(x-\frac{1+x}{3}\right)\right)=24x+12\left(-\frac{10-3x}{3}\right)
Use the distributive property to multiply 12 by 2x-\frac{10-3x}{3}.
12\left(1-\frac{1}{3}\left(x-\frac{1+x}{3}\right)\right)=24x-4\left(10-3x\right)
Cancel out 3, the greatest common factor in 12 and 3.
12\left(1-\frac{1}{3}\left(x-\frac{1+x}{3}\right)\right)=24x-40+12x
Use the distributive property to multiply -4 by 10-3x.
12\left(1-\frac{1}{3}\left(x-\frac{1+x}{3}\right)\right)=36x-40
Combine 24x and 12x to get 36x.
12\left(1-\frac{1}{3}\left(x-\left(\frac{1}{3}+\frac{1}{3}x\right)\right)\right)=36x-40
Divide each term of 1+x by 3 to get \frac{1}{3}+\frac{1}{3}x.
12\left(1-\frac{1}{3}\left(x-\frac{1}{3}-\frac{1}{3}x\right)\right)=36x-40
To find the opposite of \frac{1}{3}+\frac{1}{3}x, find the opposite of each term.
12\left(1-\frac{1}{3}\left(\frac{2}{3}x-\frac{1}{3}\right)\right)=36x-40
Combine x and -\frac{1}{3}x to get \frac{2}{3}x.
12\left(1-\frac{1}{3}\times \frac{2}{3}x-\frac{1}{3}\left(-\frac{1}{3}\right)\right)=36x-40
Use the distributive property to multiply -\frac{1}{3} by \frac{2}{3}x-\frac{1}{3}.
12\left(1+\frac{-2}{3\times 3}x-\frac{1}{3}\left(-\frac{1}{3}\right)\right)=36x-40
Multiply -\frac{1}{3} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
12\left(1+\frac{-2}{9}x-\frac{1}{3}\left(-\frac{1}{3}\right)\right)=36x-40
Do the multiplications in the fraction \frac{-2}{3\times 3}.
12\left(1-\frac{2}{9}x-\frac{1}{3}\left(-\frac{1}{3}\right)\right)=36x-40
Fraction \frac{-2}{9} can be rewritten as -\frac{2}{9} by extracting the negative sign.
12\left(1-\frac{2}{9}x+\frac{-\left(-1\right)}{3\times 3}\right)=36x-40
Multiply -\frac{1}{3} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
12\left(1-\frac{2}{9}x+\frac{1}{9}\right)=36x-40
Do the multiplications in the fraction \frac{-\left(-1\right)}{3\times 3}.
12\left(\frac{9}{9}-\frac{2}{9}x+\frac{1}{9}\right)=36x-40
Convert 1 to fraction \frac{9}{9}.
12\left(\frac{9+1}{9}-\frac{2}{9}x\right)=36x-40
Since \frac{9}{9} and \frac{1}{9} have the same denominator, add them by adding their numerators.
12\left(\frac{10}{9}-\frac{2}{9}x\right)=36x-40
Add 9 and 1 to get 10.
12\times \frac{10}{9}+12\left(-\frac{2}{9}\right)x=36x-40
Use the distributive property to multiply 12 by \frac{10}{9}-\frac{2}{9}x.
\frac{12\times 10}{9}+12\left(-\frac{2}{9}\right)x=36x-40
Express 12\times \frac{10}{9} as a single fraction.
\frac{120}{9}+12\left(-\frac{2}{9}\right)x=36x-40
Multiply 12 and 10 to get 120.
\frac{40}{3}+12\left(-\frac{2}{9}\right)x=36x-40
Reduce the fraction \frac{120}{9} to lowest terms by extracting and canceling out 3.
\frac{40}{3}+\frac{12\left(-2\right)}{9}x=36x-40
Express 12\left(-\frac{2}{9}\right) as a single fraction.
\frac{40}{3}+\frac{-24}{9}x=36x-40
Multiply 12 and -2 to get -24.
\frac{40}{3}-\frac{8}{3}x=36x-40
Reduce the fraction \frac{-24}{9} to lowest terms by extracting and canceling out 3.
\frac{40}{3}-\frac{8}{3}x-36x=-40
Subtract 36x from both sides.
\frac{40}{3}-\frac{116}{3}x=-40
Combine -\frac{8}{3}x and -36x to get -\frac{116}{3}x.
-\frac{116}{3}x=-40-\frac{40}{3}
Subtract \frac{40}{3} from both sides.
-\frac{116}{3}x=-\frac{120}{3}-\frac{40}{3}
Convert -40 to fraction -\frac{120}{3}.
-\frac{116}{3}x=\frac{-120-40}{3}
Since -\frac{120}{3} and \frac{40}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{116}{3}x=-\frac{160}{3}
Subtract 40 from -120 to get -160.
x=-\frac{160}{3}\left(-\frac{3}{116}\right)
Multiply both sides by -\frac{3}{116}, the reciprocal of -\frac{116}{3}.
x=\frac{-160\left(-3\right)}{3\times 116}
Multiply -\frac{160}{3} times -\frac{3}{116} by multiplying numerator times numerator and denominator times denominator.
x=\frac{480}{348}
Do the multiplications in the fraction \frac{-160\left(-3\right)}{3\times 116}.
x=\frac{40}{29}
Reduce the fraction \frac{480}{348} to lowest terms by extracting and canceling out 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}